Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "reverse methanogenesis pathway"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Metagenomic analysis reveals the contribution of anaerobic methanotroph-1b in the oxidation of methane at the Ulleung Basin, East Sea of Korea
Jin-Woo Lee , Kae Kyoung Kwon , Jang-Jun Bahk , Dong-Hun Lee , Hyun Sook Lee , Sung Gyun Kang , Jung-Hyun Lee
J. Microbiol. 2016;54(12):814-822.   Published online November 26, 2016
DOI: https://doi.org/10.1007/s12275-016-6379-y
  • 52 View
  • 0 Download
  • 4 Crossref
AbstractAbstract
We have previously identified a sulfate methane transition zone (SMTZ) within the methane hydrate-bearing sediment in the Ulleung Basin, East Sea of Korea, and the presence of ANME-1b group in the sediment has been shown by phylogenetic analysis of a 16S rRNA gene. Herein, we describe taxonomic and functional profiling in the SMTZ sample by metagenomic analysis, comparing with that of surface sediment. Metagenomic sequences of 115 Mbp and 252 Mbp were obtained from SMTZ and surface sediments, respectively. The taxonomic profiling using BLASTX against the SEED within MG-RAST showed the prevalence of methanogens (19.1%), such as Methanosarcinales (12.0%) and Methanomicrobiales (4.1%) predominated within the SMTZ metagenome. A number of 185,200 SMTZ reads (38.9%) and 438,484 surface reads (62.5%) were assigned to functional categories, and methanogenesis-related reads were statistically significantly overrepresented in the SMTZ metagenome. However, the mapping analysis of metagenome reads to the reference genomes, most of the sequences of the SMTZ metagenome were mapped to ANME-1 draft genomes, rather than those of methanogens. Furthermore, the two copies of the methyl-coenzyme M reductase gene (mcrA) segments of the SMTZ metagenome were clustered with ANME-1b in the phylogenetic cluster. These results indicate that ANME- 1b reads were miss-annotated to methanogens due to limitation of database. Many of key genes necessary for reverse methanogenesis were present in the SMTZ metagenome, except for N5,N10-methenyl-H4MPT reductase (mer) and CoBCoM heterodisulfide reductase subunits D and E (hdrDE). These data suggest that the ANME-1b represents the primary player the anaerobic methane oxidation in the SMTZ, of the methane hydrate-bearing sediment at the Ulleung Basin, East Sea of Korea.

Citations

Citations to this article as recorded by  
  • Methane seepage intensity distinguish microbial communities in sediments at the Mid-Okinawa Trough
    Youzhi Xin, Nengyou Wu, Zhilei Sun, Hongmei Wang, Ye Chen, Cuiling Xu, Wei Geng, Hong Cao, Xilin Zhang, Bin Zhai, Dawei Yan
    Science of The Total Environment.2022; 851: 158213.     CrossRef
  • Anthropogenic and Environmental Constraints on the Microbial Methane Cycle in Coastal Sediments
    Anna J. Wallenius, Paula Dalcin Martins, Caroline P. Slomp, Mike S. M. Jetten
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Roles of Organohalide-Respiring Dehalococcoidia in Carbon Cycling
    Yi Yang, Robert Sanford, Jun Yan, Gao Chen, Natalie L. Cápiro, Xiuying Li, Frank E. Löffler, Nick Bouskill
    mSystems.2020;[Epub]     CrossRef
  • Community structure and distribution of benthic Bacteria and Archaea in a stratified coastal lagoon in the Southern Gulf of Mexico
    Santiago Cadena, M. Leopoldina Aguirre-Macedo, Daniel Cerqueda-García, Francisco J. Cervantes, Jorge A. Herrera-Silveira, José Q. García-Maldonado
    Estuarine, Coastal and Shelf Science.2019; 230: 106433.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP