Alcaligenes faecalis is one of the most important and clinically significant environmental pathogens, increasing in importance due to its isolation from soil and nosocomial environments. The Gram-negative soil bacterium is associated with skin endocarditis, bacteremia, dysentery, meningitis, endophthalmitis, urinary tract infections, and pneumonia in patients. With emerging antibiotic resistance in A. faecalis, it has become crucial to understand the origin of such resistance genes within this clinically significant environmental and gut bacterium. In this research, we studied the impact of antibiotic overuse in poultry and its effect on developing resistance in A. faecalis. We sampled soil and faecal materials from five poultry farms, performed whole genome sequencing & analysis and identified four strains of A. faecalis. Furthermore, we characterized the genes in the genomic islands of A. faecalis isolates. We found four multidrug-resistant A. faecalis strains that showed resistance against vancomycin (MIC >1000 μg/ml), ceftazidime (50 μg/ml), colistin (50 μg/ml) and ciprofloxacin (50 μg/ml). From whole genome comparative analysis, we found more than 180 resistance genes compared to the reference sequence. Parts of our assembled contigs were found to be similar to different bacteria which included pbp1A and pbp2 imparting resistance to amoxicillin originally a part of Helicobacter and Bordetella pertussis. We also found the Mycobacterial insertion element IS6110 in the genomic islands of all four genomes. This prominent insertion element can be transferred and induce resistance to other bacterial genomes. The results thus are crucial in understanding the transfer of resistance genes in the environment and can help in developing regimes for antibiotic use in the food and poultry industry.
Achnatherum inebrians, a perennial grass, is widely distributed
in China. When infected by the endophyte Epichloë
gansuensis, A. inebrians produces an abundance of alkaloids
that enhance plant survival but are toxic to animals. Here
we used in vitro fermentation to study the impact of endophyte-
infected A. inebrians (E+) addition on rumen fermentation
characteristics and on microbial community and diversity
as assessed with amplicon sequencing technology.
We examined E+ addition at five levels, E0, E25, E50, E75,
and E100, corresponding to 0%, 25%, 50%, 75%, and 100%
of the fermentation substrate, respectively. Both the fermentation
characteristics and rumen microbial community structure
differed significantly among treatments. E100 resulted
in the highest values for pH, the Shannon index, Kiritimatiellaeota,
and Lentisphaerae levels relative to the other treatments.
In contrast, E25 was associated with higher levels of
ammonia nitrogen, total volatile fatty acid, propionate, butyrate,
isobutyrate, valerate, of the phyla Bacteroidetes and
Firmicutes, and of the genus Prevotella_1, Succiniclasticum,
Family_XIII_AD3011_group, Rikenellaceae_RC9_gut_group,
Prevotellaceae_UCG-001, and Pyramidobacter as compared
with other treatments. E50 resulted in the greatest values
for the abundance-based coverage estimator (ACE) and the
Chao1 index as compared with other treatments. E0 resulted
in the greatest values for digestibility of dry matter, gas production,
acetate, and Ruminobacter as compared with other
treatments. This approach avoided animal toxicity experiments
and confirmed that rumen fermentation characteristics and
rumen microbiota were affected by E+ toxin. Therefore, E25
showed higher abundance in Prevotella_1, Prevotellaceae_
UCG-001, and Lachnospiraceae_XPB1014_group that implied
they should play significant roles in E+ alkaloids degradation.
And then, we can infer that rumen microorganisms should
function as an antidote with respect to this poisoning reaction
at moderate dietary percentages of E+.
Citations
Citations to this article as recorded by
Effect of Potato Vine and Leaf Mixed Silage to Whole Corn Crops on Rumen Fermentation and the Microbe of Fatten Angus Bulls Siyu Zhang, Jiajie Deng, Yafang Cui, Lina Wang, Yingqi Li, Xianli Wang, Shengnan Min, Huili Wang, Qianzi Zhang, Peiqi Li, Yawen Luo, Xinjun Qiu, Yang He, Binghai Cao, Huawei Su Fermentation.2023; 9(8): 704. CrossRef
Yeast (Saccharomyces cerevisiae) Culture Promotes the Performance of Fattening Sheep by Enhancing Nutrients Digestibility and Rumen Development Jie Wang, Guohong Zhao, Yimin Zhuang, Jianmin Chai, Naifeng Zhang Fermentation.2022; 8(12): 719. CrossRef
The effects of fermented pineapple residue on growth performance, meat quality, and rumen microbiota of fattening Simmental bull Ming Deng, Zupeng Xiao, Guangbin Liu, Baoli Sun, Yongqing Guo, Xian Zou, Dewu Liu, Zhenwei Yang, Yaokun Li Frontiers in Microbiology.2022;[Epub] CrossRef
The Potential Use of Endophyte-Free inebrians as Sheep Feed Evaluated with In Vitro Fermentation Yaling Ma, Hucheng Wang, Chunjie Li, Kamran Malik Fermentation.2022; 8(9): 419. CrossRef