Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "rumen microbial communities"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Article
Delineating the Acquired Genetic Diversity and Multidrug Resistance in Alcaligenes from Poultry Farms and Nearby Soil
Abhilash Bhattacharjee, Anil Kumar Singh
J. Microbiol. 2024;62(7):511-523.   Published online June 21, 2024
DOI: https://doi.org/10.1007/s12275-024-00129-w
  • 127 View
  • 0 Download
  • 1 Web of Science
AbstractAbstract
Alcaligenes faecalis is one of the most important and clinically significant environmental pathogens, increasing in importance due to its isolation from soil and nosocomial environments. The Gram-negative soil bacterium is associated with skin endocarditis, bacteremia, dysentery, meningitis, endophthalmitis, urinary tract infections, and pneumonia in patients. With emerging antibiotic resistance in A. faecalis, it has become crucial to understand the origin of such resistance genes within this clinically significant environmental and gut bacterium. In this research, we studied the impact of antibiotic overuse in poultry and its effect on developing resistance in A. faecalis. We sampled soil and faecal materials from five poultry farms, performed whole genome sequencing & analysis and identified four strains of A. faecalis. Furthermore, we characterized the genes in the genomic islands of A. faecalis isolates. We found four multidrug-resistant A. faecalis strains that showed resistance against vancomycin (MIC >1000 μg/ml), ceftazidime (50 μg/ml), colistin (50 μg/ml) and ciprofloxacin (50 μg/ml). From whole genome comparative analysis, we found more than 180 resistance genes compared to the reference sequence. Parts of our assembled contigs were found to be similar to different bacteria which included pbp1A and pbp2 imparting resistance to amoxicillin originally a part of Helicobacter and Bordetella pertussis. We also found the Mycobacterial insertion element IS6110 in the genomic islands of all four genomes. This prominent insertion element can be transferred and induce resistance to other bacterial genomes. The results thus are crucial in understanding the transfer of resistance genes in the environment and can help in developing regimes for antibiotic use in the food and poultry industry.
Response of sheep rumen fermentation and microbial communities to feed infected with the endophyte Epichloë gansuensis as evaluated with rumen-simulating technology
Yaling Ma , Hucheng Wang , Chunjie Li
J. Microbiol. 2021;59(8):719-728.
DOI: https://doi.org/10.1007/s12275-021-1113-9
  • 47 View
  • 0 Download
  • 5 Web of Science
  • 4 Crossref
AbstractAbstract
Achnatherum inebrians, a perennial grass, is widely distributed in China. When infected by the endophyte Epichloë gansuensis, A. inebrians produces an abundance of alkaloids that enhance plant survival but are toxic to animals. Here we used in vitro fermentation to study the impact of endophyte- infected A. inebrians (E+) addition on rumen fermentation characteristics and on microbial community and diversity as assessed with amplicon sequencing technology. We examined E+ addition at five levels, E0, E25, E50, E75, and E100, corresponding to 0%, 25%, 50%, 75%, and 100% of the fermentation substrate, respectively. Both the fermentation characteristics and rumen microbial community structure differed significantly among treatments. E100 resulted in the highest values for pH, the Shannon index, Kiritimatiellaeota, and Lentisphaerae levels relative to the other treatments. In contrast, E25 was associated with higher levels of ammonia nitrogen, total volatile fatty acid, propionate, butyrate, isobutyrate, valerate, of the phyla Bacteroidetes and Firmicutes, and of the genus Prevotella_1, Succiniclasticum, Family_XIII_AD3011_group, Rikenellaceae_RC9_gut_group, Prevotellaceae_UCG-001, and Pyramidobacter as compared with other treatments. E50 resulted in the greatest values for the abundance-based coverage estimator (ACE) and the Chao1 index as compared with other treatments. E0 resulted in the greatest values for digestibility of dry matter, gas production, acetate, and Ruminobacter as compared with other treatments. This approach avoided animal toxicity experiments and confirmed that rumen fermentation characteristics and rumen microbiota were affected by E+ toxin. Therefore, E25 showed higher abundance in Prevotella_1, Prevotellaceae_ UCG-001, and Lachnospiraceae_XPB1014_group that implied they should play significant roles in E+ alkaloids degradation. And then, we can infer that rumen microorganisms should function as an antidote with respect to this poisoning reaction at moderate dietary percentages of E+.

Citations

Citations to this article as recorded by  
  • Effect of Potato Vine and Leaf Mixed Silage to Whole Corn Crops on Rumen Fermentation and the Microbe of Fatten Angus Bulls
    Siyu Zhang, Jiajie Deng, Yafang Cui, Lina Wang, Yingqi Li, Xianli Wang, Shengnan Min, Huili Wang, Qianzi Zhang, Peiqi Li, Yawen Luo, Xinjun Qiu, Yang He, Binghai Cao, Huawei Su
    Fermentation.2023; 9(8): 704.     CrossRef
  • Yeast (Saccharomyces cerevisiae) Culture Promotes the Performance of Fattening Sheep by Enhancing Nutrients Digestibility and Rumen Development
    Jie Wang, Guohong Zhao, Yimin Zhuang, Jianmin Chai, Naifeng Zhang
    Fermentation.2022; 8(12): 719.     CrossRef
  • The effects of fermented pineapple residue on growth performance, meat quality, and rumen microbiota of fattening Simmental bull
    Ming Deng, Zupeng Xiao, Guangbin Liu, Baoli Sun, Yongqing Guo, Xian Zou, Dewu Liu, Zhenwei Yang, Yaokun Li
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • The Potential Use of Endophyte-Free inebrians as Sheep Feed Evaluated with In Vitro Fermentation
    Yaling Ma, Hucheng Wang, Chunjie Li, Kamran Malik
    Fermentation.2022; 8(9): 419.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP