Marfil-Santana Miguel David , O’Connor-Sánchez Aileen , Ramírez-Prado Jorge Humberto , De los Santos-Briones Cesar , López- Aguiar , Lluvia Korynthia , Rojas-Herrera Rafael , Lago-Lestón Asunción , Prieto-Davó Alejandra
J. Microbiol. 2016;54(11):774-781. Published online October 29, 2016
The need for new antibiotics has sparked a search for the
microbes that might potentially produce them. Current sequencing
technologies allow us to explore the biotechnological
potential of microbial communities in diverse environments
without the need for cultivation, benefitting natural
product discovery in diverse ways. A relatively recent method
to search for the possible production of novel compounds
includes studying the diverse genes belonging to polyketide
synthase pathways (PKS), as these complex enzymes are an
important source of novel therapeutics. In order to explore
the biotechnological potential of the microbial community
from the largest underground aquifer in the world located
in the Yucatan, we used a polyphasic approach in which a
simple, non-computationally intensive method was coupled
with direct amplification of environmental DNA to assess
the diversity and novelty of PKS type I ketosynthase (KS)
domains. Our results suggest that the bioinformatic method
proposed can indeed be used to assess the novelty of KS enzymes;
nevertheless, this in silico study did not identify some
of the KS diversity due to primer bias and stringency criteria
outlined by the metagenomics pipeline. Therefore, additionally
implementing a method involving the direct cloning of
KS domains enhanced our results. Compared to other freshwater environments, the aquifer was characterized by considerably
less diversity in relation to known ketosynthase domains;
however, the metagenome included a family of KS
type I domains phylogenetically related, but not identical, to
those found in the curamycin pathway, as well as an outstanding
number of thiolases. Over all, this first look into the microbial
community found in this large Yucatan aquifer and
other fresh water free living microbial communities highlights
the potential of these previously overlooked environments
as a source of novel natural products.
Citations
Citations to this article as recorded by
Biosynthetic potential of the sediment microbial subcommunities of an unexplored karst ecosystem and its ecological implications Pablo Suárez‐Moo, Alejandra Prieto‐Davó MicrobiologyOpen.2024;[Epub] CrossRef
Changes in the sediment microbial community structure of coastal and inland sinkholes of a karst ecosystem from the Yucatan peninsula Pablo Suárez-Moo, Claudia A. Remes-Rodríguez, Norma A. Márquez-Velázquez, Luisa I. Falcón, José Q. García-Maldonado, Alejandra Prieto-Davó Scientific Reports.2022;[Epub] CrossRef
Insights into the Chemical Diversity of Selected Fungi from the Tza Itzá Cenote of the Yucatan Peninsula Carlos A. Fajardo-Hernández, Firoz Shah Tuglak Khan, Laura Flores-Bocanegra, Alejandra Prieto-Davó, Baojie Wan, Rui Ma, Mallique Qader, Rodrigo Villanueva-Silva, Anahí Martínez-Cárdenas, Marian A. López-Lobato, Shabnam Hematian, Scott G. Franzblau, Huzefa ACS Omega.2022; 7(14): 12171. CrossRef