Hepatitis B virus (HBV) infection highly increases the risk
for liver cirrhosis and hepatocellular carcinoma (HCC). The
clinical manifestation of HBV infection is determined by the
mutual interplay of the viral genotype, host genetic factors,
mode of transmission, adaptive mutations, and environmental
factors. Core promoter activation plays a critical role in the
pre-genomic RNA transcription of HBV for HBV replication.
The mutations of core promoter have been implicated in HCC
development. We had obtained HBV genes from Myanmar
HBV infectants and identified gene variations at the core promoter
region. For measuring the relative transactivation activity
on core promoter, we prepared the core-promoter reporter
construct. Both of A1762T and G1764A mutation were
consistently found in the HBV genes with hepatocellular carcinoma.
The A1762T/G1764A mutation was corresponding
to K130M/V131I of HBx protein. We prepared the core promoter-
luciferase reporter construct containing the double
A1762T/G1764A mutation and the K130M/V131I HBx protein
expression construct. The A1762T/G1764A mutation
highly was responsive to core promoter transactivation by
HBx, regardless of HBx mutation. The A1762T/G1764A mutation
newly created hepatocyte nuclear factor 1 (HNF1) responsive
element. Ectopic expression of HNF1 largely increased
the HBV core promoter containing A1762T/G1764A
mutation. In addition, hepatic rich fatty acid, palmitic acid
and oleic acid, increased K130M/V131I HBx level by core
promoter activation. These results provide biological properties
and clinical significance of specific HBV core promoter
mutants related with HCC development.
DNA methylation is known as a universal mechanism of epigenetic
regulation in all kingdoms of life. Particularly, given
that prokaryotes lack key elements such as histones and nucleosomes
that can structurally modify DNA, DNA methylation
is considered a major epigenetic regulator in these organisms.
However, because DNA methylation studies have focused
primarily on eukaryotes, the mechanism of prokaryotic
DNA methylation has been less studied than in eukaryotes.
DNA methylation in prokaryotes plays an important role in
regulating not only the host defense system, but also the cell
cycle, gene expression, and virulence that can respond directly
to the environment. Recent advances in sequencing techniques
capable of detecting methylation signals have allowed for the
characterization of prokaryotic genome-wide epigenetic regulation.
In this review, we describe representative examples of
cellular events regulated by DNA methylation in prokaryotes,
from early studies to current applications.
Sortases are cysteine transpeptidases that assemble surface
proteins and pili in their cell envelope. Encoded by all Grampositive
bacteria, few Gram-negative bacteria and archaea,
sortases are currently divided into six classes (A-F). Due to
the steep increase in bacterial genome data in recent years,
the number of sortase homologues have also escalated rapidly.
In this study, we used protein sequence similarity networks
to explore the taxonomic diversity of sortases and also to evaluate
the current classification of these enzymes. The resultant
data suggest that sortase classes A, B, and D predominate in
Firmicutes and classes E and F are enriched in Actinobacteria,
whereas class C is distributed in both Firmicutes and Actinobacteria
except Streptomyces family. Sortases were also observed
in various Gram-negatives and euryarchaeota, which
should be recognized as novel classes of sortases. Motif analysis
around the catalytic cysteine was also performed and
suggested that the residue at 2nd position from cysteine may
help distinguish various sortase classes. Moreover, the sequence
analysis indicated that the catalytic arginine is highly
conserved in almost all classes except sortase F in which arginine
is replaced by asparagine in Actinobacteria. Additionally,
class A sortases showed higher structural variation as compared
to other sortases, whereas inter-class comparisons suggested
structures of class C and D2 exhibited best similarities.
A better understanding of the residues highlighted in
this study should be helpful in elucidating their roles in substrate
binding and the sortase function, and successively could
help in the development of strong sortase inhibitors.