Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
13 "sexual development"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Article
Vaccine Development for Severe Fever with Thrombocytopenia Syndrome Virus in Dogs
Seok-Chan Park, Da-Eun Jeong, Sun-Woo Han, Joon-Seok Chae, Joo-Yong Lee, Hyun-Sook Kim, Bumseok Kim, Jun-Gu Kang
J. Microbiol. 2024;62(4):327-335.   Published online April 18, 2024
DOI: https://doi.org/10.1007/s12275-024-00119-y
  • 58 View
  • 0 Download
  • 1 Web of Science
AbstractAbstract
Severe fever with thrombocytopenia syndrome (SFTS) is a life-threatening viral zoonosis. The causative agent of this disease is the Dabie bandavirus, which is usually known as the SFTS virus (SFTSV). Although the role of vertebrates in SFTSV transmission to humans remains uncertain, some reports have suggested that dogs could potentially transmit SFTSV to humans. Consequently, preventive measures against SFTSV in dogs are urgently needed. In the present study, dogs were immunized three times at two-week intervals with formaldehyde-inactivated SFTSV with two types of adjuvants. SFTSV (KCD46) was injected into all dogs two weeks after the final immunization. Control dogs showed viremia from 2 to 4 days post infection (dpi), and displayed white pulp atrophy in the spleen, along with a high level of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assay (TUNEL) positive area. However, the inactivated SFTSV vaccine groups exhibited rare pathological changes and significantly reduced TUNEL positive areas in the spleen. Furthermore, SFTSV viral loads were not detected at any of the tested dpi. Our results indicate that both adjuvants can be safely used in combination with an inactivated SFTSV formulation to induce strong neutralizing antibodies. Inactivated SFTSV vaccines effectively prevent pathogenicity and viremia in dogs infected with SFTSV. In conclusion, our study highlighted the potential of inactivated SFTSV vaccination for SFTSV control in dogs.
Review
Searching for a Reliable Viral Indicator of Faecal Pollution in Aquatic Environments
Felana Harilanto Andrianjakarivony , Yvan Bettarel , Christelle Desnues
J. Microbiol. 2023;61(6):589-602.   Published online June 1, 2023
DOI: https://doi.org/10.1007/s12275-023-00052-6
  • 53 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
The disposal of sewage in significant quantities poses a health hazard to aquatic ecosystems. These effluents can contain a wide range of pathogens, making faecal contamination a leading source of waterborne diseases around the world. Yet monitoring bacteria or viruses in aquatic environments is time consuming and expensive. The standard indicators of faecal pollution all have limitations, including difficulty in determining the source due to lack of host specificity, poor connection with the presence of non-bacterial pathogens, or low environmental persistence. Innovative monitoring techniques are sorely needed to provide more accurate and targeted solutions. Viruses are a promising alternative to faecal indicator bacteria for monitoring, as they are more persistent in ambient water, more abundant in faeces, and are extremely host-specific. Given the range of viruses found in diverse contexts, it is not easy to find one “ideal” viral indicator of faecal pollution; however, several are of interest. In parallel, the ongoing development of molecular techniques coupled with metagenomics and bioinformatics should enable improved ways to detect faecal contamination using viruses. This review examines the evolution of faecal contamination monitoring with the following aims (i) to identify the characteristics of the main viral indicators of faecal contamination, including human enteric viruses, bacteriophages, CRESS and plant viruses, (ii) to assess how these have been used to monitor water pollution in recent years, (iii) to evaluate the reliability of recent detection methods of such viruses, and (iv) to tentatively determine which viruses may be most effective as markers of faecal pollution.

Citations

Citations to this article as recorded by  
  • Review of carbon dot–hydrogel composite material as a future water-environmental regulator
    Minghao Jiang, Yong Wang, Jichuan Li, Xing Gao
    International Journal of Biological Macromolecules.2024; 269: 131850.     CrossRef
Journal Articles
The velvet repressed vidA gene plays a key role in governing development in Aspergillus nidulans
Min-Ju Kim , Won-Hee Jung , Ye-Eun Son , Jae-Hyuk Yu , Mi-Kyung Lee , Hee-Soo Park
J. Microbiol. 2019;57(10):893-899.   Published online August 28, 2019
DOI: https://doi.org/10.1007/s12275-019-9214-4
  • 43 View
  • 0 Download
  • 14 Web of Science
  • 12 Crossref
AbstractAbstract
Fungal development is regulated by a variety of transcription factors in Aspergillus nidulans. Previous studies demonstrated that the NF-κB type velvet transcription factors regulate certain target genes that govern fungal differentiation and cellular metabolism. In this study, we characterize one of the VosA/VelB-inhibited developmental genes called vidA, which is predicted to encode a 581-amino acid protein with a C2H2 zinc finger domain at the C-terminus. Levels of vidA mRNA are high during the early and middle phases of asexual development and decrease during the late phase of asexual development and asexual spore (conidium) formation. Deletion of either vosA or velB results in increased vidA mRNA accumulation in conidia, suggesting that vidA transcript accumulation in conidia is repressed by VosA and VelB. Phenotypic analysis demonstrated that deletion of vidA causes decreased colony growth, reduced production of asexual spores, and abnormal formation of sexual fruiting bodies. In addition, the vidA deletion mutant conidia contain more trehalose and β-glucan than wild type. Overall, these results suggest that VidA is a putative transcription factor that plays a key role in governing proper fungal growth, asexual and sexual development, and conidia formation in A. nidulans.

Citations

Citations to this article as recorded by  
  • Regulators of the Asexual Life Cycle of Aspergillus nidulans
    Ye-Eun Son, Jae-Hyuk Yu, Hee-Soo Park
    Cells.2023; 12(11): 1544.     CrossRef
  • The Forkhead Gene fkhB is Necessary for Proper Development in Aspergillus nidulans
    Seo-Yeong Jang, Ye-Eun Son, Dong-Soon Oh, Kap-Hoon Han, Jae-Hyuk Yu, Hee-Soo Park
    Journal of Microbiology and Biotechnology.2023; 33(11): 1420.     CrossRef
  • The function of a conidia specific transcription factor CsgA in Aspergillus nidulans
    He-Jin Cho, Hee-Soo Park
    Scientific Reports.2022;[Epub]     CrossRef
  • The Putative C2H2 Transcription Factor VadH Governs Development, Osmotic Stress Response, and Sterigmatocystin Production in Aspergillus nidulans
    Xiaoyu Li, Yanxia Zhao, Heungyun Moon, Jieyin Lim, Hee-Soo Park, Zhiqiang Liu, Jae-Hyuk Yu
    Cells.2022; 11(24): 3998.     CrossRef
  • The Role of Chromatin and Transcriptional Control in the Formation of Sexual Fruiting Bodies in Fungi
    Minou Nowrousian
    Microbiology and Molecular Biology Reviews.2022;[Epub]     CrossRef
  • Functions of PUF Family RNA-Binding Proteins in Aspergillus nidulans
    Sung-Hun Son, Seo-Yeong Jang, Hee-Soo Park
    Journal of Microbiology and Biotechnology.2021; 31(5): 676.     CrossRef
  • The putative sensor histidine kinase VadJ coordinates development and sterigmatocystin production in Aspergillus nidulans
    Yanxia Zhao, Mi-Kyung Lee, Jieyin Lim, Heungyun Moon, Hee-Soo Park, Weifa Zheng, Jae-Hyuk Yu
    Journal of Microbiology.2021; 59(8): 746.     CrossRef
  • Unveiling the Functions of the VosA-VelB Target GenevidDinAspergillus nidulans
    Ye-Eun Son, Hee-Soo Park
    Mycobiology.2021; 49(3): 258.     CrossRef
  • Velvet activated McrA plays a key role in cellular and metabolic development in Aspergillus nidulans
    Mi-Kyung Lee, Ye-Eun Son, Hee-Soo Park, Ahmad Alshannaq, Kap-Hoon Han, Jae-Hyuk Yu
    Scientific Reports.2020;[Epub]     CrossRef
  • The role of the VosA-repressed dnjA gene in development and metabolism in Aspergillus species
    Ye-Eun Son, He-Jin Cho, Wanping Chen, Sung-Hun Son, Mi-Kyung Lee, Jae-Hyuk Yu, Hee-Soo Park
    Current Genetics.2020; 66(3): 621.     CrossRef
  • Homeobox proteins are essential for fungal differentiation and secondary metabolism in Aspergillus nidulans
    Sung-Hun Son, Ye-Eun Son, He-Jin Cho, Wanping Chen, Mi-Kyung Lee, Lee-Han Kim, Dong-Min Han, Hee-Soo Park
    Scientific Reports.2020;[Epub]     CrossRef
  • The brlA Gene Deletion Reveals That Patulin Biosynthesis Is Not Related to Conidiation in Penicillium expansum
    Chrystian Zetina-Serrano, Ophélie Rocher, Claire Naylies, Yannick Lippi, Isabelle P. Oswald, Sophie Lorber, Olivier Puel
    International Journal of Molecular Sciences.2020; 21(18): 6660.     CrossRef
Expression of sexual genes in Aspergillus fumigatus homogeneous culture produced by vegetative mass mating
Joo-Yeon Lim , Hee-Moon Park
J. Microbiol. 2019;57(8):688-693.   Published online May 11, 2019
DOI: https://doi.org/10.1007/s12275-019-9094-7
  • 48 View
  • 0 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract
There are presently no studies on the genes for sexual development of Aspergillus fumigatus in situ using mating culture, primarily because of challenging experimental conditions that require a significantly long period of induction and produce developmentally heterogenous culture, harboring very few sexual organs. In order to overcome these challenges, we developed an efficient and convenient procedure called ‘vegetative mass mating (VeM)’ for study at a molecular level. The VeM method enabled production of a developmentally homogenous A. fumigatus culture, harboring many sexual organs in a plate within a short period of two weeks. Feasibility of the use of VeM for functional study of genes during A. fumigatus sexual development was evaluated by analyzing the transcription pattern of genes involved in pheromone signal transduction and regulation of sexual development. Here, we present for the first time, an in situ expression pattern of sexual genes during the mating process, induced by the VeM
method
, which will enable and promote the sexual development study of A. fumigatus at the molecular level.

Citations

Citations to this article as recorded by  
  • The Gβ-like Protein AfCpcB Affects Sexual Development, Response to Oxidative Stress and Phagocytosis by Alveolar Macrophages in Aspergillus fumigatus
    Joo-Yeon Lim, Yeon-Ju Kim, Hee-Moon Park
    Journal of Fungi.2022; 8(1): 56.     CrossRef
  • The LAMMER Kinase, LkhA, Affects Aspergillus fumigatus Pathogenicity by Modulating Reproduction and Biosynthesis of Cell Wall PAMPs
    Joo-Yeon Lim, Yeon Ju Kim, Seul Ah Woo, Jae Wan Jeong, Yu-Ri Lee, Cheol-Hee Kim, Hee-Moon Park
    Frontiers in Cellular and Infection Microbiology.2021;[Epub]     CrossRef
  • Global Sexual Fertility in the Opportunistic Pathogen Aspergillus fumigatus and Identification of New Supermater Strains
    Sameira S. Swilaiman, Céline M. O’Gorman, Wenyue Du, Janyce A. Sugui, Joanne Del Buono, Matthias Brock, Kyung J. Kwon-Chung, George Szakacs, Paul S. Dyer
    Journal of Fungi.2020; 6(4): 258.     CrossRef
Reviews
MINIREVIEW] Transcriptional control of sexual development in Cryptococcus neoformans
Matthew E. Mead , Christina M. Hull
J. Microbiol. 2016;54(5):339-346.   Published online April 20, 2016
DOI: https://doi.org/10.1007/s12275-016-6080-1
  • 42 View
  • 0 Download
  • 6 Crossref
AbstractAbstract
Developmental processes are essential for the normal life cycles of many pathogenic fungi, and they can facilitate survival in challenging environments, including the human host. Sexual development of the human fungal pathogen Cryptococcus neoformans not only produces infectious particles (spores) but has also enabled the evolution of new disease-related traits such as drug resistance. Transcription factor networks are essential to the development and pathogenesis of C. neoformans, and a variety of sequence-specific DNA-binding proteins control both key developmental transitions and virulence by regulating the expression of their target genes. In this review we discuss the roles of known transcription factors that harbor important connections to both development and virulence. Recent studies of these transcription factors have identified a common theme in which metabolic, stress, and other responses that are required for sexual development appear to have been co-opted for survival in the human host, thus facilitating pathogenesis. Future work elucidating the connection between development and pathogenesis will provide vital insights into the evolution of complex traits in eukaryotes as well as mechanisms that may be used to combat fungal pathogens.

Citations

Citations to this article as recorded by  
  • Effect of a Mating Type Gene Editing in Lentinula edodes Using RNP/Nanoparticle Complex
    Minseek Kim, Minji Oh, Ji-Hoon Im, Eun-Ji Lee, Hojin Ryu, Hyeon-Su Ro, Youn-Lee Oh
    Journal of Fungi.2024; 10(12): 866.     CrossRef
  • Current Perspectives on Uniparental Mitochondrial Inheritance in Cryptococcus neoformans
    Amber R. Matha, Xiaorong Lin
    Pathogens.2020; 9(9): 743.     CrossRef
  • Investigation of Mating Pheromone–Pheromone Receptor Specificity in Lentinula edodes
    Sinil Kim, Byeongsuk Ha, Minseek Kim, Hyeon-Su Ro
    Genes.2020; 11(5): 506.     CrossRef
  • The Evolution of Sexual Reproduction and the Mating-Type Locus: Links to Pathogenesis of Cryptococcus Human Pathogenic Fungi
    Sheng Sun, Marco A. Coelho, Márcia David-Palma, Shelby J. Priest, Joseph Heitman
    Annual Review of Genetics.2019; 53(1): 417.     CrossRef
  • Pathways of Pathogenicity: Transcriptional Stages of Germination in the Fatal Fungal Pathogen Rhizopus delemar
    Poppy C. S. Sephton-Clark, Jose F. Muñoz, Elizabeth R. Ballou, Christina A. Cuomo, Kerstin Voelz, Aaron P. Mitchell
    mSphere.2018;[Epub]     CrossRef
  • Activation of the Mating Pheromone Response Pathway ofLentinula edodesby Synthetic Pheromones
    Byeongsuk Ha, Sinil Kim, Minseek Kim, Hyeon-Su Ro
    Mycobiology.2018; 46(4): 407.     CrossRef
REVIEW] Developmental regulators in Aspergillus fumigatus
Hee-Soo Park , Jae-Hyuk Yu
J. Microbiol. 2016;54(3):223-231.   Published online February 27, 2016
DOI: https://doi.org/10.1007/s12275-016-5619-5
  • 49 View
  • 0 Download
  • 51 Crossref
AbstractAbstract
The filamentous fungus Aspergillus fumigatus is the most prevalent airborne fungal pathogen causing severe and usually fatal invasive aspergillosis in immunocompromised patients. This fungus produces a large number of small hydrophobic asexual spores called conidia as the primary means of reproduction, cell survival, propagation, and infectivity. The initiation, progression, and completion of asexual development (conidiation) is controlled by various regulators that govern expression of thousands of genes associated with formation of the asexual developmental structure conidiophore, and biogenesis of conidia. In this review, we summarize key regulators that directly or indirectly govern conidiation in this important pathogenic fungus. Better understanding these developmental regulators may provide insights into the improvement in controlling both beneficial and detrimental aspects of various Aspergillus species.

Citations

Citations to this article as recorded by  
  • Pleiotropic functions of SscA on the asexual spore of the human pathogenic fungus Aspergillus fumigatus
    Ye-Eun Son, Jiwoo Han, Kyung-Tae Lee, Hee-Soo Park
    Mycology.2024; 15(2): 238.     CrossRef
  • Regulation of Conidiation and Aflatoxin B1 Biosynthesis by a Blue Light Sensor LreA in Aspergillus flavus
    Kunzhi Jia, Yipu Jia, Qianhua Zeng, Zhaoqi Yan, Shihua Wang
    Journal of Fungi.2024; 10(9): 650.     CrossRef
  • Comprehensive Insights into the Remarkable Function and Regulatory Mechanism of FluG during Asexual Development in Beauveria bassiana
    Fang Li, Juefeng Zhang, Haiying Zhong, Kaili Yu, Jianming Chen
    International Journal of Molecular Sciences.2024; 25(11): 6261.     CrossRef
  • Genome-wide patterns of noncoding and protein-coding sequence variation in the major fungal pathogen Aspergillus fumigatus
    Alec Brown, Jacob L Steenwyk, Antonis Rokas, J Comeron
    G3: Genes, Genomes, Genetics.2024;[Epub]     CrossRef
  • Cellular communication and fusion regulate cell fusion, trap morphogenesis, conidiation, and secondary metabolism in Arthrobotrys oligospora
    Wenjie Wang, Yankun Liu, Shipeng Duan, Na Bai, Meichen Zhu, Jinkui Yang
    Microbiological Research.2024; 278: 127516.     CrossRef
  • The Cryptochrome CryA Regulates Lipid Droplet Accumulation, Conidiation, and Trap Formation via Responses to Light in Arthrobotrys oligospora
    Yanmei Shen, Xuewei Yang, Meichen Zhu, Shipeng Duan, Qianqian Liu, Jinkui Yang
    Journal of Fungi.2024; 10(9): 626.     CrossRef
  • The CfKOB1 gene related to cell apoptosis is required for pathogenicity and involved in mycovirus-induced hypovirulence in Colletotrichum fructicola
    Jun Zi Zhu, Ping Li, Zhuo Zhang, Xiao Gang Li, Jie Zhong
    International Journal of Biological Macromolecules.2024; 271: 132437.     CrossRef
  • Functional and Quality Assessment of a Spore Harvester for Entomopathogenic Fungi for Biopesticide Production
    Fidel Diego-Nava, Carlos Granados-Echegoyen, Jaime Ruíz-Vega, Teodulfo Aquino-Bolaños, Rafael Pérez-Pacheco, Alejo Díaz-Ramos, Nancy Alonso-Hernández, Fabián Arroyo-Balán, Mónica Beatriz López-Hernández
    AgriEngineering.2023; 5(2): 801.     CrossRef
  • Verticillium dahliae Asp1 regulates the transition from vegetative growth to asexual reproduction by modulating microtubule dynamic organization
    Juan Tian, Mengli Pu, Bin Chen, Guangda Wang, Chunli Li, Xiaxia Zhang, Yanjun Yu, Zhi Wang, Zhaosheng Kong
    Environmental Microbiology.2023; 25(3): 738.     CrossRef
  • Antifungal Activity of Plant Secondary Metabolites on Candida albicans: An Updated Review
    Andleeb Khan, Sivakumar Sivagurunathan Moni, M. Ali, Syam Mohan, Huma Jan, Saiema Rasool, Mohammad A Kamal, Saeed Alshahrani, Maryam Halawi, Hassan A Alhazmi
    Current Molecular Pharmacology.2023; 16(1): 15.     CrossRef
  • Chitin Biosynthesis in Aspergillus Species
    Veronica S. Brauer, André M. Pessoni, Mateus S. Freitas, Marinaldo P. Cavalcanti-Neto, Laure N. A. Ries, Fausto Almeida
    Journal of Fungi.2023; 9(1): 89.     CrossRef
  • Transcription factor CreA is involved in the inverse regulation of biofilm formation and asexual development through distinct pathways in Aspergillus fumigatus
    Shuai Liu, Xiaoyan Lu, Mengyao Dai, Shizhu Zhang
    Molecular Microbiology.2023; 120(6): 830.     CrossRef
  • A new butenolide with antifungal activity from solid co-cultivation of Irpex lacteus and Nigrospora oryzae
    Ya-Mei Wu, Xue-Qiong Yang, Jing-Xin Chen, Ting Wang, Tai-Ran Li, Fan-Rong Liao, Run-Tong Liu, Ya-Bin Yang, Zhong-Tao Ding
    Natural Product Research.2023; 37(13): 2243.     CrossRef
  • A Network of Sporogenesis-Responsive Genes Regulates the Growth, Asexual Sporogenesis, Pathogenesis and Fusaric Acid Production of Fusarium oxysporum f. sp. cubense
    Songmao Lu, Huobing Deng, Yaqi Lin, Meimei Huang, Haixia You, Yan Zhang, Weijian Zhuang, Guodong Lu, Yingzi Yun
    Journal of Fungi.2023; 10(1): 1.     CrossRef
  • Light regulates the degradation of the regulatory protein VE-1 in the fungus Neurospora crassa
    María del Mar Gil-Sánchez, Sara Cea-Sánchez, Eva M. Luque, David Cánovas, Luis M. Corrochano
    BMC Biology.2022;[Epub]     CrossRef
  • The C-22 sterol desaturase Erg5 is responsible for ergosterol biosynthesis and conidiation in Aspergillus fumigatus
    Nanbiao Long, Guowei Zhong
    Journal of Microbiology.2022; 60(6): 620.     CrossRef
  • Comparative Transcriptomic Analyses Reveal the Regulatory Mechanism of Nutrient Limitation-Induced Sporulation of Antrodia cinnamomea in Submerged Fermentation
    Huaxiang Li, Dan Ji, Zhishan Luo, Yilin Ren, Zhenming Lu, Zhenquan Yang, Zhenghong Xu
    Foods.2022; 11(17): 2715.     CrossRef
  • Azole‐resistant Aspergillus fumigatus as an emerging worldwide pathogen
    Sofia Marisel Rivelli Zea, Takahito Toyotome
    Microbiology and Immunology.2022; 66(3): 135.     CrossRef
  • Transcriptional Regulation by the Velvet Protein VE-1 during Asexual Development in the Fungus Neurospora crassa
    Sara Cea-Sánchez, María Corrochano-Luque, Gabriel Gutiérrez, N. Louise Glass, David Cánovas, Luis M. Corrochano, Reinhard Fischer
    mBio.2022;[Epub]     CrossRef
  • The secondary metabolite regulator, BbSmr1, is a central regulator of conidiation via the BrlA‐AbaA‐WetA pathway in Beauveria bassiana
    Jin‐Feng Chen, Yu Liu, Gui‐Rong Tang, Dan Jin, Xi Chen, Yan Pei, Yan‐Hua Fan
    Environmental Microbiology.2021; 23(2): 810.     CrossRef
  • BbWor1, a Regulator of Morphological Transition, Is Involved in Conidium-Hypha Switching, Blastospore Propagation, and Virulence in Beauveria bassiana
    Lei Qiu, Tong-Sheng Zhang, Ji-Zheng Song, Jing Zhang, Ze Li, Juan-Juan Wang, Christina A. Cuomo
    Microbiology Spectrum.2021;[Epub]     CrossRef
  • The putative sensor histidine kinase VadJ coordinates development and sterigmatocystin production in Aspergillus nidulans
    Yanxia Zhao, Mi-Kyung Lee, Jieyin Lim, Heungyun Moon, Hee-Soo Park, Weifa Zheng, Jae-Hyuk Yu
    Journal of Microbiology.2021; 59(8): 746.     CrossRef
  • Novel Biological Functions of the NsdC Transcription Factor in Aspergillus fumigatus
    Patrícia Alves de Castro, Clara Valero, Jéssica Chiaratto, Ana Cristina Colabardini, Lakhansing Pardeshi, Lilian Pereira Silva, Fausto Almeida, Marina Campos Rocha, Roberto Nascimento Silva, Iran Malavazi, Wenyue Du, Paul S. Dyer, Matthias Brock, Flávio V
    mBio.2021;[Epub]     CrossRef
  • The Heterotrimeric Transcription Factor CCAAT-Binding Complex and Ca 2+ -CrzA Signaling Reversely Regulate the Transition between Fungal Hyphal Growth and Asexual Reproduction
    Yiran Ren, Chi Zhang, Ziqing Chen, Ling Lu, Reinhard Fischer
    mBio.2021;[Epub]     CrossRef
  • The fungal‐specific histone acetyltransferase Rtt109 regulates development, DNA damage response, and virulence in Aspergillus fumigatus
    Yuanwei Zhang, Jialu Fan, Jing Ye, Ling Lu
    Molecular Microbiology.2021; 115(6): 1191.     CrossRef
  • Deep convolutional neural network: a novel approach for the detection of Aspergillus fungi via stereomicroscopy
    Haozhong Ma, Jinshan Yang, Xiaolu Chen, Xinyu Jiang, Yimin Su, Shanlei Qiao, Guowei Zhong
    Journal of Microbiology.2021; 59(6): 563.     CrossRef
  • The Arf-GAP AoGlo3 regulates conidiation, endocytosis, and pathogenicity in the nematode-trapping fungus Arthrobotrys oligospora
    Yuxin Ma, Xuewei Yang, Meihua Xie, Guosheng Zhang, Le Yang, Na Bai, Yining Zhao, Dongni Li, Ke-Qin Zhang, Jinkui Yang
    Fungal Genetics and Biology.2020; 138: 103352.     CrossRef
  • The Autophagy-Related Gene Aolatg4 Regulates Hyphal Growth, Sporulation, Autophagosome Formation, and Pathogenicity in Arthrobotrys oligospora
    Duanxu Zhou, Meihua Xie, Na Bai, Le Yang, Ke-Qin Zhang, Jinkui Yang
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Molecular Mechanisms of Conidial Germination in Aspergillus spp
    Tim J. H. Baltussen, Jan Zoll, Paul E. Verweij, Willem J. G. Melchers
    Microbiology and Molecular Biology Reviews.2020;[Epub]     CrossRef
  • Reducing Aspergillus fumigatus Virulence through Targeted Dysregulation of the Conidiation Pathway
    James I. P. Stewart, Vinicius M. Fava, Joshua D. Kerkaert, Adithya S. Subramanian, Fabrice N. Gravelat, Melanie Lehoux, P. Lynne Howell, Robert A. Cramer, Donald C. Sheppard, James W. Kronstad
    mBio.2020;[Epub]     CrossRef
  • Velvet activated McrA plays a key role in cellular and metabolic development in Aspergillus nidulans
    Mi-Kyung Lee, Ye-Eun Son, Hee-Soo Park, Ahmad Alshannaq, Kap-Hoon Han, Jae-Hyuk Yu
    Scientific Reports.2020;[Epub]     CrossRef
  • The Transcriptional Regulator HbxA Governs Development, Secondary Metabolism, and Virulence in Aspergillus fumigatus
    Timothy Satterlee, Binita Nepal, Sophie Lorber, Olivier Puel, Ana M. Calvo, Irina S. Druzhinina
    Applied and Environmental Microbiology.2020;[Epub]     CrossRef
  • The Cell Wall Integrity Pathway Contributes to the Early Stages of Aspergillus fumigatus Asexual Development
    Marina Campos Rocha, João Henrique Tadini Marilhano Fabri, Isabelle Taira Simões, Rafael Silva-Rocha, Daisuke Hagiwara, Anderson Ferreira da Cunha, Gustavo Henrique Goldman, David Cánovas, Iran Malavazi, Irina S. Druzhinina
    Applied and Environmental Microbiology.2020;[Epub]     CrossRef
  • In vitro and in vivo characterization of two nonsporulating Aspergillus fumigatus clinical isolates from immunocompetent patients
    Zheng Zhang, Yuan Jiang, Jun Chen, Peiying Chen, Qingtao Kong, Ling Lu, Hong Sang
    Medical Mycology.2020; 58(4): 543.     CrossRef
  • The brlA Gene Deletion Reveals That Patulin Biosynthesis Is Not Related to Conidiation in Penicillium expansum
    Chrystian Zetina-Serrano, Ophélie Rocher, Claire Naylies, Yannick Lippi, Isabelle P. Oswald, Sophie Lorber, Olivier Puel
    International Journal of Molecular Sciences.2020; 21(18): 6660.     CrossRef
  • Recurrent Loss of abaA, a Master Regulator of Asexual Development in Filamentous Fungi, Correlates with Changes in Genomic and Morphological Traits
    Matthew E Mead, Alexander T Borowsky, Bastian Joehnk, Jacob L Steenwyk, Xing-Xing Shen, Anita Sil, Antonis Rokas, Jason E Stajich
    Genome Biology and Evolution.2020; 12(7): 1119.     CrossRef
  • The histone acetyltransferase GcnE regulates conidiation and biofilm formation in Aspergillus fumigatus
    Chi-Jan Lin, Yi-Hsuan Hou, Ying-Lien Chen
    Medical Mycology.2019;[Epub]     CrossRef
  • Aspergillus fumigatus phosphoethanolamine transferase gene gpi7 is required for proper transportation of the cell wall GPI-anchored proteins and polarized growth
    Haomiao Ouyang, Ting Du, Hui Zhou, Iain B. H. Wilson, Jinghua Yang, Jean-Paul Latgé, Cheng Jin
    Scientific Reports.2019;[Epub]     CrossRef
  • Identification of a Novel Transcription Factor TP05746 Involved in Regulating the Production of Plant-Biomass-Degrading Enzymes in Talaromyces pinophilus
    Ting Zhang, Lu-Sheng Liao, Cheng-Xi Li, Gui-Yan Liao, Xiong Lin, Xue-Mei Luo, Shuai Zhao, Jia-Xun Feng
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • The Velvet Proteins VosA and VelB Play Different Roles in Conidiation, Trap Formation, and Pathogenicity in the Nematode-Trapping Fungus Arthrobotrys oligospora
    Guosheng Zhang, Yaqing Zheng, Yuxin Ma, Le Yang, Meihua Xie, Duanxu Zhou, Xuemei Niu, Ke-Qin Zhang, Jinkui Yang
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • An LaeA- and BrlA-Dependent Cellular Network Governs Tissue-Specific Secondary Metabolism in the Human Pathogen Aspergillus fumigatus
    Abigail L. Lind, Fang Yun Lim, Alexandra A. Soukup, Nancy P. Keller, Antonis Rokas, Aaron P. Mitchell
    mSphere.2018;[Epub]     CrossRef
  • MybA, a new player driving survival of the conidium of the human pathogen Aspergillus fumigatus
    Özlem Sarikaya Bayram, Jean Paul Latgé, Özgür Bayram
    Current Genetics.2018; 64(1): 141.     CrossRef
  • C-terminus Proteolysis and Palmitoylation Cooperate for Optimal Plasma Membrane Localization of RasA in Aspergillus fumigatus
    Qusai Al Abdallah, Adela Martin-Vicente, Ana Camila Oliveira Souza, Wenbo Ge, Jarrod R. Fortwendel
    Frontiers in Microbiology.2018;[Epub]     CrossRef
  • Aspergillus fumigatus -induced early inflammatory response in pulmonary microvascular endothelial cells: Role of p38 MAPK and inhibition by silibinin
    Jun Song, Weihua Pan, Yue Sun, Jing Han, Weimin Shi, Wanqing Liao
    International Immunopharmacology.2017; 49: 195.     CrossRef
  • Comparative Transcriptomic and Proteomic Analyses Reveal a FluG‐Mediated Signaling Pathway Relating to Asexual Sporulation of Antrodia camphorata
    Hua‐Xiang Li, Zhen‐Ming Lu, Qing Zhu, Jin‐Song Gong, Yan Geng, Jin‐Song Shi, Zheng‐Hong Xu, Yan‐He Ma
    PROTEOMICS.2017;[Epub]     CrossRef
  • Human fungal pathogens: Why should we learn?
    Jeong-Yoon Kim
    Journal of Microbiology.2016; 54(3): 145.     CrossRef
  • Aspergillus fumigatus spore proteomics and genetics reveal that VeA represses DefA-mediated DNA damage response
    Kwang-Soo Shin, Hee-Soo Park, Young Kim, In-Beom Heo, Young Hwan Kim, Jae-Hyuk Yu
    Journal of Proteomics.2016; 148: 26.     CrossRef
  • Utilization of a Conidia-Deficient Mutant to Study Sexual Development in Fusarium graminearum
    Hokyoung Son, Jae Yun Lim, Yoonji Lee, Yin-Won Lee, Sung-Hwan Yun
    PLOS ONE.2016; 11(5): e0155671.     CrossRef
  • Putative methyltransferase LaeA and transcription factor CreA are necessary for proper asexual development and controlling secondary metabolic gene cluster expression
    Xiujun Zhang, Yingying Zhu, Longfei Bao, Liwei Gao, Guangshan Yao, Yanan Li, Zhifeng Yang, Zhonghai Li, Yaohua Zhong, Fuli Li, Heng Yin, Yinbo Qu, Yuqi Qin
    Fungal Genetics and Biology.2016; 94: 32.     CrossRef
  • How to invade a susceptible host: cellular aspects of aspergillosis
    Sven Krappmann
    Current Opinion in Microbiology.2016; 34: 136.     CrossRef
  • Negative regulation and developmental competence in Aspergillus
    Mi-Kyung Lee, Nak-Jung Kwon, Im-Soon Lee, Seunho Jung, Sun-Chang Kim, Jae-Hyuk Yu
    Scientific Reports.2016;[Epub]     CrossRef
Research Support, Non-U.S. Gov'ts
A Putative APSES Transcription Factor Is Necessary for Normal Growth and Development of Aspergillus nidulans
Ji-Yeon Lee , Lee-Han Kim , Ha-Eun Kim , Jae-Sin Park , Kap-Hoon Han , Dong-Min Han
J. Microbiol. 2013;51(6):800-806.   Published online December 19, 2013
DOI: https://doi.org/10.1007/s12275-013-3100-2
  • 46 View
  • 0 Download
  • 13 Crossref
AbstractAbstract
The nsdD gene encoding a GATA type transcription factor positively controls sexual development in Aspergillus nidulans. According to microarray data, 20 genes that were upregulated by deleting nsdD during various life cycle stages were randomly selected and deleted for functional analysis. None of the mutants showed apparent changes in growth or development compared with those of the wild-type except the AN3154 gene that encodes a putative APSES transcription factor and is an ortholog of Saccharomyces cerevisiae swi4. Deleting AN3154 resulted in retarded growth and development, and the gene was named rgdA (retared growth and development). The rgdA deletion mutant developed a reduced number of conidia even under favorable conditions for asexual development. The retarded growth and development was partially suppressed by the veA1 mutation. The conidial heads of the mutant aborted, showing reduced and irregular shaped phialides. Fruiting body development was delayed compared with that in the wild-type. The mutant did not respond to various nutritional or environmental factors that affected the development patterns. The rgdA gene was expressed at low levels throughout the life cycle and was not significantly affected by several regulators of sexual and asexual development such as nsdD, veA, stuA, or brlA. However, the rgdA gene affected brlA and abaA expression, which function as key regulators of asexual sporulation, suggesting that rgdA functions upstream of those genes.

Citations

Citations to this article as recorded by  
  • Putative APSES family transcription factor mbp1 plays an essential role in regulating cell wall synthesis in the agaricomycete Pleurotus ostreatus
    Hayase Kojima, Moriyuki Kawauchi, Yuitsu Otsuka, Kim Schiphof, Kenya Tsuji, Akira Yoshimi, Chihiro Tanaka, Shigekazu Yano, Takehito Nakazawa, Yoichi Honda
    Fungal Genetics and Biology.2024; 175: 103936.     CrossRef
  • Regulators of the Asexual Life Cycle of Aspergillus nidulans
    Ye-Eun Son, Jae-Hyuk Yu, Hee-Soo Park
    Cells.2023; 12(11): 1544.     CrossRef
  • Characterization of the mbsA Gene Encoding a Putative APSES Transcription Factor in Aspergillus fumigatus
    Yong-Ho Choi, Sang-Cheol Jun, Min-Woo Lee, Jae-Hyuk Yu, Kwang-Soo Shin
    International Journal of Molecular Sciences.2021; 22(7): 3777.     CrossRef
  • The Putative APSES Transcription Factor RgdA Governs Growth, Development, Toxigenesis, and Virulence in Aspergillus fumigatus
    Sang-Cheol Jun, Yong-Ho Choi, Min-Woo Lee, Jae-Hyuk Yu, Kwang-Soo Shin, Aaron P. Mitchell
    mSphere.2020;[Epub]     CrossRef
  • Analogous and Diverse Functions of APSES-Type Transcription Factors in the Morphogenesis of the Entomopathogenic Fungus Metarhizium rileyi
    Caiyan Xin, Jinping Zhang, Siji Nian, Guangxi Wang, Zhongkang Wang, Zhangyong Song, Guangwei Ren, Ning-Yi Zhou
    Applied and Environmental Microbiology.2020;[Epub]     CrossRef
  • Distribution, evolution and expression ofGATA-TFsprovide new insights into their functions in light response and fruiting body development ofTolypocladium guangdongense
    Chenghua Zhang, Gangzheng Wang, Wangqiu Deng, Taihui Li
    PeerJ.2020; 8: e9784.     CrossRef
  • Characterization of the APSES-family transcriptional regulators of Histoplasma capsulatum
    Larissa V G Longo, Stephanie C Ray, Rosana Puccia, Chad A Rappleye
    FEMS Yeast Research.2018;[Epub]     CrossRef
  • Essential APSES Transcription Factors for Mycotoxin Synthesis, Fungal Development, and Pathogenicity in Aspergillus flavus
    Guangshan Yao, Feng Zhang, Xinyi Nie, Xiuna Wang, Jun Yuan, Zhenhong Zhuang, Shihua Wang
    Frontiers in Microbiology.2017;[Epub]     CrossRef
  • Characterizing the nuclear proteome of Paracoccidioides spp.
    Lucas Nojosa Oliveira, Luciana Casaletti, Sônia Nair Báo, Clayton Luiz Borges, Patrícia de Sousa Lima, Célia Maria de Almeida Soares
    Fungal Biology.2016; 120(10): 1209.     CrossRef
  • Isolation and Characterization of Two Methyltransferase Genes, AfuvipB and AfuvipC in Aspergillus fumigatus
    Mohammed A. Abdo Elgabbar, Kap-Hoon Han
    The Korean Journal of Mycology.2015; 43(1): 33.     CrossRef
  • Depletion of ε-COP in the COPI Vesicular Coat Reduces Cleistothecium Production inAspergillus nidulans
    Eun-Hye Kang, Eun-Jung Song, Jun Ho Kook, Hwan-Hee Lee, Bo-Ri Jeong, Hee-Moon Park
    Mycobiology.2015; 43(1): 31.     CrossRef
  • FgFlbD regulates hyphal differentiation required for sexual and asexual reproduction in the ascomycete fungus Fusarium graminearum
    Hokyoung Son, Myung-Gu Kim, Suhn-Kee Chae, Yin-Won Lee
    Journal of Microbiology.2014; 52(11): 930.     CrossRef
  • Transcriptional regulation of fksA, a β-1,3-glucan synthase gene, by the APSES protein StuA during Aspergillus nidulans development
    Bum-Chan Park, Yun-Hee Park, Soohyun Yi, Yu Kyung Choi, Eun-Hye Kang, Hee-Moon Park
    Journal of Microbiology.2014; 52(11): 940.     CrossRef
NOTE] Isolation and Characterization of Self-Fertile Suppressors from the Sterile nsdD Deletion Mutant of Aspergillus nidulans
Dong-Beom Lee , Lee Han Kim , Jin-Pyo Kim , Kap-Hoon Han , Dong-Min Han
J. Microbiol. 2011;49(6):1054-1057.   Published online December 28, 2011
DOI: https://doi.org/10.1007/s12275-011-1111-4
  • 25 View
  • 0 Download
  • 3 Scopus
AbstractAbstract
To identify downstream and/or interactive factors of the nsdD gene, which encodes a positive regulator of sexual development of Aspergillus nidulans, suppressor mutants displaying a self-fertile phenotype were isolated from a sterile nsdD deletion mutant. At least five different loci (sndA-E) were identified and genetically analyzed. In the nsdD+ background, most of the suppressors showed a marked increment of sexual development, even under the stress conditions that normally inhibited sexual development. The common phenotype of the suppressor mutants suggested the involvement of the snd genes in the negative regulation of sexual development in response to the environmental factors.
Screening of Growth- or Development-related Genes by Using Genomic Library with Inducible Promoter in Aspergillus nidulans
Bang-Yong Lee , Sang-Yong Han , Han Gil Choi , Jee Hyun Kim , Kap-Hoon Han , Dong-Min Han
J. Microbiol. 2005;43(6):523-528.
DOI: https://doi.org/2295 [pii]
  • 38 View
  • 0 Download
AbstractAbstract
Using the genomic library constructed at the downstream of the niiA promoter, which induces the over-expression of an inserted DNA fragment, we have attempted to screen the genes affecting growth or development by over-expression. The wild-type strain was transformed using the AMA-niiA(p) library and cultured on 1.2 M sorbitol media, in which asexual sporulation is induced, but sexual development is repressed. Over 100,000 strains transformed to pyrG+ were analyzed with regard to any changes in phenotype. Consequently, seven strains were isolated for further analyses. These strains were designated NOT [niiA(p) over-expression transformants] stains. Four of the strains were of the inducible type, and the remaining strains were of the multi-copy suppression type. Two of the inducible-type strains, NOT1 and NOT40, harbored genes which had been inserted in reverse direction, suggesting that the mutant phenotypes had been derived from an excess amount of anti-sense mRNA. Domain analyses of the deduced polypeptides from the DNA fragments rescued from the transformants revealed that NOT1, NOT40 and NOT6 harbored a LisH motif, a forkhead domain, and a Zn(II)2Cys6 binuclear zinc cluster, respectively.
Quantitative Analysis of Expressed Genes in Aspergillus Oryzae by Sequencing 3'-directed cDNA Clones
Hwang, Hyun Ah , Lee, Dong Whan , Kim, Jong Hwa , Lee, Tae Kyoo , Yang, Moon Sik , Chae, Keon Sang
J. Microbiol. 1998;36(2):111-117.
  • 40 View
  • 0 Download
AbstractAbstract
Sequence analysis of randomly selected 3'-directed cKNA clones has been known to be one of the most powerful methods of examining the genes highly expressed in a tissue or cell type. We constructed a 3'-directed cDNA libraty from Aspergillus oryzae mycelia, and sequenced 345 randomly selected 3'-directed cDNA clones. Determined nucleotide sequences, not shorter than 30nt, were compared with one other to generate gene signatures (GSs) and were then compared with GenBank entries to analyze sequence similarity to known genes. A GS for the most highly expressed gene appeared six times, one GS five times, five GSs four times, five GSs three times and 22 GSs twice. In total, 324 clones yielded 268 GSs consisting of 34 redundant GSs appeaning at least twice and 234 solitary ones. Forty-three GSs showed similarities ranging from 60% to 99% with known sequences from Genbank. A considerable number of A. oryzae GSs mateched those obtained from the sexual structures of A. nidulans suggests that A. oryzae may not be phylogentically distant from A. nidulans and that A. oryzae may have a sexual life cycle from the ancient period.
Promotion of Asexual Development and Inhibition of Sexual Development of Aspergillus nidulans by Short-Chain Primary Amines
Myung Hoon Song , Kuppusamy Selvam , Chang-Jun Choi , Kwang-Yeop Jahng , Dong-Min Han , Keon-Sang Chae
J. Microbiol. 2002;40(3):230-233.
  • 39 View
  • 0 Download
AbstractAbstract
Effects of short-chain primary amines on Aspergillus nidulans development were analyzed. Propylamine induced asexual development and inhibited sexual development. Even on medium containing lactose as the sole carbon source, on which little conidial heads are formed and sexual structures are formed preferentially, or when sexual development was induced, propylamine induced asexual development and inhibited sexual development. These effects of propylamine seemed to be due to accumulation of mRNA of the brlA gene, which has been identified as a positive regulator of asexual development, and due to the reduction of the veA mRNA level. The veA gene has been identified as an activator of sexual development and also as an inhibitor of asexual development. Other primary amines, methylamine and ethylamine, showed identical effects on development where short-chain primary amine also promoted asexual development and inhibited sexual development.
Environmental factors affecting development of Aspergillus nidulans
Kap-Hoon Han , Dong-Beom Lee , Jong-Hak Kim , Min-Su Kim , Kyu-Yong Han , Won-Shin Kim , Young-Soon Park , Heui-Baik Kim^ , Dong-Min Han^
J. Microbiol. 2003;41(1):34-40.
  • 33 View
  • 0 Download
AbstractAbstract
Aspergillus nidulans, a homothalic ascomycete, has a complete sexual reproductive cycle as well as an asexual one. Both sexual and asexual development are known to be genetically programmed, but are also strongly affected by environmental factors including nutrients, light, temperature and osmolarity. We have examined these factors to define favored conditions for fruiting body (cleistothecium) formation. In general, fruiting body formation was enhanced where carbon and nitrogen sources were sufficient. Limitation of C-source caused predominant asexual development while inhibiting sexual development. When higher concentrations of glucose were supplied, more cleistothecia were formed. Other carbon sources including lactose, galactose and glycerol made the fungus develop cleistothecia very well, whereas acetate caused asexual sporulation only. Organic nitrogen sources like casein hydrolysate and glycine, and an increase in nitrate or ammonium concentration also enhanced sexual development. In addition to nutrient effects, low levels of aerobic respiration, caused either by platesealing or treatment with various chemicals, favored sexual development. Carbon limitation, light exposure and a high concentration of salts promoted asexual development preferentially, suggesting that stress conditions may drive the cell to develop asexual sporulation while comfortable and wellnourished growth conditions favored sexual development.
Regulation of nsdD Expression in Aspergillus nidulans
Kap Hoon Han , Kyu-Yong Han , Min-Su Kim , Dong-Beom Lee , Jong-Hak Kim , Suhn-Kee Chae , Keon-Sang Chae , Dong-Min Han
J. Microbiol. 2003;41(3):259-261.
  • 32 View
  • 0 Download
AbstractAbstract
The nsdD gene has been predicted to encode a GATA type transcription factor with the type IVb zinc finger DNA binding domain functions in activating sexual development of A. nidulans. In several allelic mutants of nsdD producing truncated NsdD polypeptides lacking the C-terminal zinc finger, the transcription level of nsdD gene was greatly increased. Also in an over-expressed mutant, the transcription under its own promoter was reduced. These results suggest that the expression of nsdD is negatively autoregulated. When the nsdD gene was over-expressed, cleistothecia were formed in excess amounts even in the presence of 0.6M KCl that inhibited sexual development of the wild type. Northern blot analysis revealed that the expression of nsdD was repressed by 0.6M KCl. These results strongly suggest that the inhibition of sexual development by salts was carried out via the nsdD involved regulatory network.

Journal of Microbiology : Journal of Microbiology
TOP