Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
8 "sporulation"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Development of a Novel D‑Lactic Acid Production Platform Based on Lactobacillus saerimneri TBRC 5746
Kitisak Sansatchanon , Pipat Sudying , Peerada Promdonkoy , Yutthana Kingcha , Wonnop Visessanguan , Sutipa Tanapongpipat , Weerawat Runguphan , Kanokarn Kocharin
J. Microbiol. 2023;61(9):853-863.   Published online September 14, 2023
DOI: https://doi.org/10.1007/s12275-023-00077-x
  • 53 View
  • 0 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract
D-Lactic acid is a chiral, three-carbon organic acid, that bolsters the thermostability of polylactic acid. In this study, we developed a microbial production platform for the high-titer production of D-lactic acid. We screened 600 isolates of lactic acid bacteria (LAB) and identified twelve strains that exclusively produced D-lactic acid in high titers. Of these strains, Lactobacillus saerimneri TBRC 5746 was selected for further development because of its homofermentative metabolism. We investigated the effects of high temperature and the use of cheap, renewable carbon sources on lactic acid production and observed a titer of 99.4 g/L and a yield of 0.90 g/g glucose (90% of the theoretical yield). However, we also observed L-lactic acid production, which reduced the product’s optical purity. We then used CRISPR/dCas9-assisted transcriptional repression to repress the two Lldh genes in the genome of L. saerimneri TBRC 5746, resulting in a 38% increase in D-lactic acid production and an improvement in optical purity. This is the first demonstration of CRISPR/dCas9-assisted transcriptional repression in this microbial host and represents progress toward efficient microbial production of D-lactic acid.

Citations

Citations to this article as recorded by  
  • Industrial–scale production of various bio–commodities by engineered microbial cell factories: Strategies of engineering in microbial robustness
    Ju-Hyeong Jung, Vinoth Kumar Ponnusamy, Gopalakrishnan Kumar, Bartłomiej Igliński, Vinod Kumar, Grzegorz Piechota
    Chemical Engineering Journal.2024; 502: 157679.     CrossRef
  • Microbial Cell Factories: Biodiversity, Pathway Construction, Robustness, and Industrial Applicability
    Rida Chaudhary, Ali Nawaz, Mireille Fouillaud, Laurent Dufossé, Ikram ul Haq, Hamid Mukhtar
    Microbiology Research.2024; 15(1): 247.     CrossRef
  • Adaptive Evolution for the Efficient Production of High-Quality d-Lactic Acid Using Engineered Klebsiella pneumoniae
    Bo Jiang, Jiezheng Liu, Jingnan Wang, Guang Zhao, Zhe Zhao
    Microorganisms.2024; 12(6): 1167.     CrossRef
  • Enhancing D-lactic acid production from non-detoxified corn stover hydrolysate via innovative F127-IEA hydrogel-mediated immobilization of Lactobacillus bulgaricus T15
    Yuhan Zheng, Feiyang Sun, Siyi Liu, Gang Wang, Huan Chen, Yongxin Guo, Xiufeng Wang, Maia Lia Escobar Bonora, Sitong Zhang, Yanli Li, Guang Chen
    Frontiers in Microbiology.2024;[Epub]     CrossRef
Analysis of a bac operon-silenced strain suggests pleiotropic effects of bacilysin in Bacillus subtilis
Ozan Ertekin , Meltem Kutnu , Aslı Aras Ta&# , Mustafa Demir , Ayten Yazgan Karata&# , Gülay Özcengiz
J. Microbiol. 2020;58(4):297-313.   Published online January 28, 2020
DOI: https://doi.org/10.1007/s12275-020-9064-0
  • 49 View
  • 0 Download
  • 6 Web of Science
  • 7 Crossref
AbstractAbstract
Bacilysin, as the simplest peptide antibiotic made up of only L-alanine and L-anticapsin, is produced and excreted by Bacillus subtilis under the control of quorum sensing. We analyzed bacilysin-nonproducing strain OGU1 which was obtained by bacA-targeted pMutin T3 insertion into the parental strain genome resulting in a genomic organization (bacA􍿁::lacZ::erm::bacABCDEF) to form an IPTG-inducible bac operon. Although IPTG induction provided 3- to 5-fold increment in the transcription of bac operon genes, no bacilysin activity was detectable in bioassays and inability of the OGU1 to form bacilysin was confirmed by UPLC-mass spectrometry analysis. Phenotypic analyses revealed the deficiencies in OGU1 with respect to colony pigmentation, spore coat proteins, spore resistance and germination, which could be rescued by external addition of bacilysin concentrate into its cultures. 2DE MALDI-TOF/MS and nanoLC-MS/MS were used as complementary approaches to compare cytosolic proteomes of OGU1. 2-DE identified 159 differentially expressed proteins corresponding to 121 distinct ORFs. In nanoLCMS/ MS, 76 proteins were differentially expressed in OGU1. Quantitative transcript analyses of selected genes validated the proteomic findings. Overall, the results pointed to the impact of bacilysin on expression of certain proteins of sporulation and morphogenesis; the members of mother cell compartment- specific σE and σK regulons in particular, quorum sensing and two component-global regulatory systems, peptide transport, stress response as well as CodY- and ScoCregulated proteins.

Citations

Citations to this article as recorded by  
  • Biocontrol Ability of Strain Bacillus amyloliquefaciens SQ-2 against Table Grape Rot Caused by Aspergillus tubingensis
    Suran Li, Shuangshuang Dai, Lei Huang, Yumeng Cui, Ming Ying
    Journal of Agricultural and Food Chemistry.2024; 72(44): 24374.     CrossRef
  • Isolation and identification of a novel Bacillus velezensis strain JIN4 and its potential for biocontrol of kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae
    Xin Zhao, Yang Zhai, Lin Wei, Fei Xia, Yuanru Yang, Yongjian Yi, Hongying Wang, Caisheng Qiu, Feng Wang, Liangbin Zeng
    Frontiers in Plant Science.2024;[Epub]     CrossRef
  • Signatures of kin selection in a natural population of the bacteria Bacillus subtilis
    Laurence J Belcher, Anna E Dewar, Chunhui Hao, Melanie Ghoul, Stuart A West
    Evolution Letters.2023; 7(5): 315.     CrossRef
  • Comparative biological network analysis for differentially expressed proteins as a function of bacilysin biosynthesis in Bacillus subtilis
    Meltem Kutnu, Elif Tekin İşlerel, Nurcan Tunçbağ, Gülay Özcengiz
    Integrative Biology.2022; 14(5): 99.     CrossRef
  • Probiotic effects of the Bacillus velezensis GY65 strain in the mandarin fish, Siniperca chuatsi
    Jiachuan Wang, Defeng Zhang, Yajun Wang, Zhijun Liu, Lijuan Liu, Cunbin Shi
    Aquaculture Reports.2021; 21: 100902.     CrossRef
  • Bacilysin within the Bacillus subtilis group: gene prevalence versus antagonistic activity against Gram-negative foodborne pathogens
    Catherine Nannan, Huong Quynh Vu, Annika Gillis, Simon Caulier, Thuy Thanh Thi Nguyen, Jacques Mahillon
    Journal of Biotechnology.2021; 327: 28.     CrossRef
  • Impact of spatial proximity on territoriality among human skin bacteria
    Jhonatan A. Hernandez-Valdes, Lu Zhou, Marcel P. de Vries, Oscar P. Kuipers
    npj Biofilms and Microbiomes.2020;[Epub]     CrossRef
Aeration Effects on Metabolic Events during Sporulation of Bacillus thuringiensis
Mohammad H. Sarrafzadeh , Sabine Schorr-Galindo , Hyun-Joon La , Hee-Mock Oh
J. Microbiol. 2014;52(7):597-603.   Published online June 28, 2014
DOI: https://doi.org/10.1007/s12275-014-3547-9
  • 50 View
  • 0 Download
  • 6 Crossref
AbstractAbstract
The metabolism of Bacillus thuringiensis during its sporulation process was investigated under different concentrations of oxygen. At the beginning of sporulation, the aeration conditions were regulated to obtain different oxygen transfer rates (OTR) in four separate fermentations, representing interrupted, limited, non-limited, and saturated oxygenation, respectively. A higher OTR resulted in a higher pH, up to about 9 in the case of saturated oxygenation, while the interrupted oxygenation resulted in a significantly acidic culture. In contrast, the absence of oxygen resulted in rapid sporangia lysis and caused acidification of the medium, indicating a distinctly different sporangia composition and different metabolism. The bacterium also showed different CO2 production rates during sporulation, although amaximum point was observed in every case.With a higher OTR, the maximal value was observed after a longer time and at a lower value (40, 26, and 13 mmol/L/h for limited, non-limited, and saturated cases, respectively). Despite the exhaustion of glucose prior to the sporulation phase, the interrupted oxygenation resulted in acetate, lactate, and citrate in the medium with a maximum concentration of 4.8, 1.3, and 5.0 g/L, respectively. Notwithstanding, while the metabolic events differed visibly in the absence of oxygen, once sporulation was triggered, it was completed, even in the case of an interrupted oxygen supply.

Citations

Citations to this article as recorded by  
  • High cell density cultivation of Bacillus subtilis NCIM 2063: Modeling, optimization and a scale-up procedure
    Sandra Stamenkovic-Stojanovic, Ivana Karabegovic, Bojana Danilovic, Stojan Mancic, Miodrag Lazic
    Journal of the Serbian Chemical Society.2023; 88(11): 1103.     CrossRef
  • Effect of the volumetric oxygen mass transfer coefficient on producing δ-endotoxins by Bacillus thuringiensis in culture medium based on forage palm
    Túlio Alexandre Freire da Silva, Lívia Santos de Freitas, Larita Veruska José Bezerra da Silva, José Manoel Wanderley Duarte Neto, Gilvanda Ribeiro da Silva, Liane Maria de Almeida Castro Maranhão, Cynthia Araújo de Lacerda, José de Paula Oliveira, Raquel
    Biocatalysis and Agricultural Biotechnology.2021; 32: 101960.     CrossRef
  • Review on biopesticide production by Bacillus thuringiensis subsp. kurstaki since 1990: Focus on bioprocess parameters
    Wafa Jallouli, Fatma Driss, Luc Fillaudeau, Souad Rouis
    Process Biochemistry.2020; 98: 224.     CrossRef
  • Solid-state fermentation of Bacillus thuringiensis var kurstaki HD-73 maintains higher biomass and spore yields as compared to submerged fermentation using the same media
    Jorge Lima-Pérez, Marcos López-Pérez, Gustavo Viniegra-González, Octavio Loera
    Bioprocess and Biosystems Engineering.2019; 42(9): 1527.     CrossRef
  • Modeling of Fermentation Process of Bacillus Thuringiensis as a Sporulating Bacterium
    Soroush Soleymani, Mohammad-Hossein Sarrafzadeh, Navid Mostoufi
    Chemical Product and Process Modeling.2019;[Epub]     CrossRef
  • Optimal strategies for bioremediation of nitrate-contaminated groundwater and microalgae biomass production
    Fariba Rezvani, Mohammad-Hossein Sarrafzadeh, Seong-Hyun Seo, Hee-Mock Oh
    Environmental Science and Pollution Research.2018; 25(27): 27471.     CrossRef
Research Support, Non-U.S. Gov'ts
Sporulation of Several Biocontrol Fungi as Affected by Carbon and Nitrogen Sources in a Two-Stage Cultivation System
Li Gao , Xingzhong Liu
J. Microbiol. 2010;48(6):767-770.   Published online January 9, 2011
DOI: https://doi.org/10.1007/s12275-010-0049-2
  • 37 View
  • 0 Download
  • 6 Scopus
AbstractAbstract
The development of fungal biopesticides requires the efficient production of large numbers spores or other propagules. The current study used published information concerning carbon concentrations and C:N ratios to evaluate the effects of carbon and nitrogen sources on sporulation of Paecilomyces lilacinus (IPC-P and M- 14) and Metarhizium anisopliae (SQZ-1-21 and RS-4-1) in a two-stage cultivation system. For P. lilacinus IPCP, the optimal sporulation medium contained urea as the nitrogen source, dextrin as the carbon source at 1 g/L, a C:N ratio of 5:1, with ZnSO4·7H2O at 10 mg/L and CaCl2 at 3 g/L. The optimal sporulation medium for P. lilacinus M-14 contained soy peptone as the nitrogen source and maltose as the carbon source at 2 g/L, a C:N ratio of 10:1, with ZnSO4·7H2O at 250 mg/L, CuSO4·5H2O at 10 mg/L, H3BO4 at 5 mg/L, and Na2MoO4·2H2O at 5 mg/L. The optimum sporulation medium for M. anisopliae SQZ-1-21 contained urea as the nitrogen source, sucrose as the carbon source at 16 g/ L, a C:N ratio of 80:1, with ZnSO4·7H2O at 50 mg/L, CuSO4·5H2O at 50 mg/L, H3BO4 at 5 mg/L, and MnSO4·H2O at 10 mg/L. The optimum sporulation medium for M. anisopliae RS-4-1 contained soy peptone as the nitrogen source, sucrose as the carbon source at 4 g/L, a C:N ratio of 5:1, with ZnSO4·7H2O at 50 mg/L and H3BO4 at 50 mg/L. All sporulation media contained 17 g/L agar. While these results were empirically derived, they provide a first step toward low-cost mass production of these biocontrol agents.
Cytochrome c_550 is Related to Initiation of Sporulation in Bacillus subtilis
Inji Shin , Han-Bong Ryu , Hyung-Soon Yim , Sa-Ouk Kang
J. Microbiol. 2005;43(3):244-250.
DOI: https://doi.org/2218 [pii]
  • 36 View
  • 0 Download
AbstractAbstract
The effect of cytochrome c_550 encoded by cccA in Bacillus subtilis during the event of sporulation was investigated. The sporulation of cccA-overexpressing mutant was significantly accelerated, while disruptant strain showed delayed sporulation in spite of the same growth rate. Activity of sporulation stage-0-specific enzyme, extracellular [alpha]-amylase of mutant strains was similar to that of the control strain, but cccA-overexpressing mutant exhibited higher activity of stage-II-specific alkaline phosphatase and stage-III-specific glucose dehydrogenase when compared to deletion mutant and control strain. Northern blot analysis also revealed that cccA-overexpressing mutant showed high level of spo0A transcripts, while the disruptant rarely expressed spo0A. These results suggested that although cytochrome c_550 is dispensable for growth and sporulation, expression of cccA may play an important role for initiation of sporulation through regulation of spo0A expression.
Fungal-sporulation suppressing substances produced by pseudomonas aeruginosa KMCS-1
Min, Bu Yong , Shim, Jae Young , Kim, Kun Woo , Lee, Jong Kyu , Yoon, Kwon Sang
J. Microbiol. 1996;34(3):284-288.
  • 37 View
  • 0 Download
AbstractAbstract
Among the bacteria isolated form compost piles of cattle excretion in a pasture located at the suburbs of Chunchon city, Pseudomonas aeruginosa KMCS-1 was selected for the test of antifungal substances produced. Six fractions were separated by silica gel column chromatography, and then the antifungal activity of each fraction was assayed against Escherichia coli, Bacillus subtilis, Candida albicans, Rhizopus sp., Aspergillus nidulans, Coprinus cinereus, and Pyricularia oryzae by paper disc method. Two fractions showed significant suppressive activities against A. nidulans, C. cinereus, and P. oryzae; however, their mycelial growth was not affected by neither of these fractions. Inhibitory activities of these fractions to sporulation was assayed at the concentration of 50. 25, 12. 5, and 6.25 ㎍/ml and the average inhibition rates against sporulation of A. nidulans, C. cinereus, and P. oryzae were 94.0, 98.3, and 77.9%, respectively. Further purification and analysis of active substances are now being conducted.
Novel strategy for isolating suppressors of meiosis-deficient mutants and its application for isolating the bcy1 suppressor
Shin, Deug Yong , Yun, Jean Ho , Yoo, Hyang Sook
J. Microbiol. 1997;35(1):61-65.
  • 36 View
  • 0 Download
AbstractAbstract
A novel strategy was developed for isolating suppressors from sporulation-deficient mutants. The mutation in the BCY1 gene, which codes for the regulatory subunit of cAMP-dependent protein kinase, when homozygous, results in diploids being meiosis and sporulation deficient. Two plasmids, YCp-MATα and YEp-SPOT7-lacZ, were introduced into MATα BCY1^+ or MATα bcy1 haploid cells. The transformant of the BCY1^+ haploid cell produced β-galactosidase under nutrient starvation, but the bcy1 transformant did not. Using this system, the mutagenesis experiment performed on the bcy1 transformant strain resulted in a number of sporulation mutants that produced β-galactosidase under nutrient starvation. One complementation group, sob1, was identified from the isolated suppressor mutants and characterized as a single recessive mutation by tetrad analysis. Genetic analysis revealed that the sob1 mutation suppressed the sporulation deficiency, the failure to arrest at the G1 phase of the cell cycle, and the sensitivity to heat or nitrogen starvation caused by the bcy1 mutation. However, the sob1 mutation did not suppress the sporulation deficiency of ime1 and of ime2 diploids. These results suggest that the sob1 mutation affects a gene which functions as a downstream regulator in both meiosis and cell cycle regulation.
Microscopic Examination of the Suppressive Action of Antifungal Substances from Pseudomonas aeruginosa on Asexual Sporulation of Fungi
Yoon, Kwon S. , Min, Bu Y. , Choi, Hyoung T. , Lee, Jong K. , Kim, Kun W.
J. Microbiol. 1999;37(1):27-34.
  • 39 View
  • 0 Download
AbstractAbstract
Two fractions with unusual antifungal activity that suppress asexual sporulation of several fungi were obtained from culture filtrate of Pseudomonas aeruginosa and were partially purified through the repeated silicagel flash column chromatographies. The sporulation-suppressive actions of these fractions in Aspergillus nidulans, Rhizopus stolonifer, and Coprinus cinereus, were analyzed by light and electron microscopes. The germination ability of the spores produced in the presence of these fractions were also checked to determine the persistent effects of these antifungal substances on the next generation. Light microscopic observation of developing sporangia of R. stolonifer grown in the presence of both fractions revealed that the significant number of sporangia failed to reach maturity, and frequently, uncontrolled growths of hyphae and rhizoids from the sporangiophores were found. In A. nidulans addition of these fractions appeared to cause different classes of morphological abnormality in conidia development, which included aborted formation of conidiogenous cells from the apex of conidiophores and enhanced hyphal growths either at the tip or middle of the conidiophores. Germination abilities of spores obtained from the cultures grown in the presence of antifungal fractions were 40∼60% in Aspergillus, 50∼80% in Coprinus (thallic spores), and 30∼40% in Rhizopus compared to those of normal spores.

Journal of Microbiology : Journal of Microbiology
TOP