Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
23 "surface"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Articles
Enhanced Poly-γ-Glutamic Acid Production by a Newly Isolated Bacillus halotolerans F29
Xiaorong Sun, Yaoyu Cai, Dexin Wang
J. Microbiol. 2024;62(8):695-707.   Published online August 20, 2024
DOI: https://doi.org/10.1007/s12275-024-00153-w
  • 68 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
Poly-γ-glutamic acid (γ-PGA) is a promising biopolymer for various applications. In this study, we isolated a novel γ-PGA-producing strain, Bacillus halotolerans F29. The one-factor-at-a-time method was used to investigate the influence of carbon sources, nitrogen sources, and culture parameters on γ-PGA production. The optimal carbon and nitrogen sources were sucrose and (NH4)2SO4, respectively. The optimal culture conditions for γ-PGA production were determined to be 37 °C and a pH of 5.5. Response surface methodology was used to determine the optimum medium components: 77.6 g/L sucrose, 43.0 g/L monosodium glutamate, and 2.2 g/L K2HPO4. The γ-PGA titer increased significantly from 8.5 ± 0.3 g/L to 20.7 ± 0.7 g/L when strain F29 was cultivated in the optimized medium. Furthermore, the γ-PGA titer reached 50.9 ± 1.5 g/L with a productivity of 1.33 g/L/h and a yield of 2.23 g of γ-PGA/g of L-glutamic acid with the optimized medium in fed-batch fermentation. The maximum γ-PGA titer reached 45.3 ± 1.1 g/L, with a productivity of 1.06 g/L/h when molasses was used as a carbon source. It should be noted that the γ-PGA yield in this study was the highest of all reported studies, indicating great potential for the industrial production of γ-PGA.

Citations

Citations to this article as recorded by  
  • Transcriptomics-guided rational engineering in Bacillus licheniformis for enhancing poly-γ-glutamic acid biosynthesis using untreated molasses
    Rui Han, Qian Zhong, Yifan Yan, Juan Wang, Yifan Zhu, Sha Li, Peng Lei, Rui Wang, Yibin Qiu, Zhengshan Luo, Hong Xu
    International Journal of Biological Macromolecules.2024; 282: 137514.     CrossRef
Diversity and Dynamics of Marine Arenicolous Fungi in Three Seasides of the Korean Peninsula
Jun Won Lee , Chang Wan Seo , Wonjun Lee , Ji Seon Kim , Ki Hyeong Park , Yoonhee Cho , Young Woon Lim
J. Microbiol. 2023;61(1):63-82.   Published online January 30, 2023
DOI: https://doi.org/10.1007/s12275-023-00011-1
  • 57 View
  • 0 Download
  • 4 Web of Science
  • 3 Crossref
AbstractAbstract
Various arenicolous fungal species have been detected from the beach sand in the coastal area. However, little has been revealed regarding their distribution and dynamics. To investigate the overall diversity of marine arenicolous fungi (MAFs) in Korea and whether the composition of MAFs is affected by ocean currents, we isolated and analyzed the fungal community from the western, southern, and eastern seasides of the Korean Peninsula. In total, 603 strains were isolated and identified as 259 species based on appropriate molecular markers for each genus (ITS, BenA, CaM, tef1, and act). The composition of MAFs showed differences among the seasides. Our results indicate that many MAFs inhabit the beach sand on the Korean Peninsula, and the composition of MAFs is also affected by ocean currents flowing along each coast.

Citations

Citations to this article as recorded by  
  • The genus Peniophora (Russulales, Basidiomycota) from Patagonia revisited
    Mario Rajchenberg, Andrés de Errasti, Sergio Pérez Gorjón
    Mycological Progress.2024;[Epub]     CrossRef
  • Contributions to the Inocybe umbratica–paludinella (Agaricales) Group in China: Taxonomy, Species Diversity, and Molecular Phylogeny
    Xin Chen, Wen-Jie Yu, Tolgor Bau, P. Brandon Matheny, Egon Horak, Yu Liu, Li-Wu Qin, Li-Ping Tang, Yu-Peng Ge, Tie-Zhi Liu, Yu-Guang Fan
    Journal of Fungi.2024; 10(12): 893.     CrossRef
  • Long-Term Investigation of Marine-Derived Aspergillus Diversity in the Republic of Korea
    Jun Won Lee, Wonjun Lee, Rekhani Hansika Perera, Young Woon Lim
    Mycobiology.2023; 51(6): 436.     CrossRef
Spot 42 RNA regulates putrescine catabolism in Escherichia coli by controlling the expression of puuE at the post-transcription level
Xin Sun , Ruyan Li , Guochen Wan , Wanli Peng , Shuangjun Lin , Zixin Deng , Rubing Liang
J. Microbiol. 2021;59(2):175-185.   Published online February 1, 2021
DOI: https://doi.org/10.1007/s12275-021-0421-4
  • 47 View
  • 0 Download
  • 2 Web of Science
  • 2 Crossref
AbstractAbstract
Putrescine, a typical polyamine compound important for cell growth and stress resistance, can be utilized as an energy source. However, the regulation of its catabolism is unclear. Here the small RNA (sRNA) Spot 42, an essential regulator of carbon catabolite repression (CCR), was confirmed to participate in the post-transcriptional regulation of putrescine catabolism in Escherichia coli. Its encoding gene spf exclusively exists in the γ-proteobacteria and contains specific binding sites to the 5􍿁-untranslated regions of the puuE gene, which encodes transaminase in the glutamylated putrescine pathway of putrescine catabolism converting γ-aminobutyrate (GABA) into succinate semialdehyde (SSA). The transcription of the spf gene was induced by glucose, inhibited by putrescine, and unaffected by PuuR, the repressor of puu genes. Excess Spot 42 repressed the expression of PuuE significantly in an antisense mechanism through the direct and specific base-pairing between the 51–57 nt of Spot 42 and the 5􍿁- UTR of puuE. Interestingly, Spot 42 mainly influenced the stability of the puuCBE transcript. This work revealed the regulatory role of Spot 42 in putrescine catabolism, in the switch between favorable and non-favorable carbon source utilization, and in the balance of metabolism of carbon and nitrogen sources.

Citations

Citations to this article as recorded by  
  • Regulation of TCA cycle genes by srbA sRNA: Impacts on Pseudomonas aeruginosa virulence and survival
    Piyali Saha, Samir Kumar Mukherjee, Sk Tofajjen Hossain
    Biochemical and Biophysical Research Communications.2024; 737: 150520.     CrossRef
  • Rational Design of High-Efficiency Synthetic Small Regulatory RNAs and Their Application in Robust Genetic Circuit Performance Through Tight Control of Leaky Gene Expression
    Jun Ren, Nuong Thi Nong, Phuong N. Lam Vo, Hyang-Mi Lee, Dokyun Na
    ACS Synthetic Biology.2024; 13(10): 3256.     CrossRef
The effects of deletion of cellobiohydrolase genes on carbon source-dependent growth and enzymatic lignocellulose hydrolysis in Trichoderma reesei
Meibin Ren , Yifan Wang , Guoxin Liu , Bin Zuo , Yuancheng Zhang , Yunhe Wang , Weifeng Liu , Xiangmei Liu , Yaohua Zhong
J. Microbiol. 2020;58(8):687-695.   Published online June 10, 2020
DOI: https://doi.org/10.1007/s12275-020-9630-5
  • 57 View
  • 0 Download
  • 8 Web of Science
  • 8 Crossref
AbstractAbstract
The saprophytic fungus Trichoderma reesei has long been used as a model to study microbial degradation of lignocellulosic biomass. The major cellulolytic enzymes of T. reesei are the cellobiohydrolases CBH1 and CBH2, which constitute more than 70% of total proteins secreted by the fungus. However, their physiological functions and effects on enzymatic hydrolysis of cellulose substrates are not sufficiently elucidated. Here, the cellobiohydrolase-encoding genes cbh1 and cbh2 were deleted, individually or combinatively, by using an auxotrophic marker-recycling technique in T. reesei. When cultured on media with different soluble carbon sources, all three deletion strains (Δcbh1, Δcbh2, and Δcbh1Δcbh2) exhibited no dramatic variation in morphological phenotypes, but their growth rates increased apparently when cultured on soluble cellulase-inducing carbon sources. In addition, Δcbh1 showed dramatically reduced growth and Δcbh1Δcbh2 could hardly grew on microcrystalline cellulose (MCC), whereas all strains grew equally on sodium carboxymethyl cellulose (CMC-Na), suggesting that the influence of the CBHs on growth was carbon source-dependent. Moreover, five representative cellulose substrates were used to analyse the influence of the absence of CBHs on saccharification efficiency. CBH1 deficiency significantly affected the enzymatic hydrolysis rates of various cellulose substrates, where acid pre-treated corn stover (PCS) was influenced the least. CBH2 deficiency reduced the hydrolysis of MCC, PCS, and acid pre-treated and delignified corncob but improved the hydrolysis ability of filter paper. These results demonstrate the specific contributions of CBHs to the hydrolysis of different types of biomass, which could facilitate the development of tailor-made strains with highly efficient hydrolysis enzymes for certain biomass types in the biofuel industry.

Citations

Citations to this article as recorded by  
  • An efficient CRISPR/Cas9 genome editing system based on a multiple sgRNA processing platform in Trichoderma reesei for strain improvement and enzyme production
    Jiaxin Zhang, Kehang Li, Yu Sun, Cheng Yao, Weifeng Liu, Hong Liu, Yaohua Zhong
    Biotechnology for Biofuels and Bioproducts.2024;[Epub]     CrossRef
  • Transcriptome-wide analysis of a superior xylan degrading isolate Penicillium oxalicum 5–18 revealed active lignocellulosic degrading genes
    Shuang Hu, Pei Han, Bao-Teng Wang, Long Jin, Hong-Hua Ruan, Feng-Jie Jin
    Archives of Microbiology.2024;[Epub]     CrossRef
  • Engineering the secretome of Aspergillus niger for cellooligosaccharides production from plant biomass
    Fernanda Lopes de Figueiredo, Fabiano Jares Contesini, César Rafael Fanchini Terrasan, Jaqueline Aline Gerhardt, Ana Beatriz Corrêa, Everton Paschoal Antoniel, Natália Sayuri Wassano, Lucas Levassor, Sarita Cândida Rabelo, Telma Teixeira Franco, Uffe Hasb
    Microbial Cell Factories.2024;[Epub]     CrossRef
  • Constitutive overexpression of cellobiohydrolase 2 in Trichoderma reesei reveals its ability to initiate cellulose degradation
    Yubo Wang, Meibin Ren, Yifan Wang, Lu Wang, Hong Liu, Mei Shi, Yaohua Zhong
    Engineering Microbiology.2023; 3(1): 100059.     CrossRef
  • Inducer-free recombinant protein production in Trichoderma reesei: secretory production of endogenous enzymes and heterologous nanobodies using glucose as the sole carbon source
    Toshiharu Arai, Mayumi Wada, Hiroki Nishiguchi, Yasushi Takimura, Jun Ishii
    Microbial Cell Factories.2023;[Epub]     CrossRef
  • The Influence of Trctf1 Gene Knockout by CRISPR–Cas9 on Cellulase Synthesis by Trichoderma reesei with Various Soluble Inducers
    Yudian Chen, Yushan Gao, Zancheng Wang, Nian Peng, Xiaoqin Ran, Tingting Chen, Lulu Liu, Yonghao Li
    Fermentation.2023; 9(8): 746.     CrossRef
  • The effect of cellobiohydrolase 1 gene knockout for composition and hydrolytic activity of the enzyme complex secreted by filamentous fungus Penicillium verruculosum
    Valeriy Yu. Kislitsin, Andrey M. Chulkin, Ivan N. Zorov, Yuri А. Denisenko, Arkadiy P. Sinitsyn, Alexandra M. Rozhkova
    Bioresource Technology Reports.2022; 18: 101023.     CrossRef
  • Deciphering the efficient cellulose degradation by the thermophilic fungus Myceliophthora thermophila focused on the synergistic action of glycoside hydrolases and lytic polysaccharide monooxygenases
    Xing Qin, Jiahuan Zou, Kun Yang, Jinyang Li, Xiaolu Wang, Tao Tu, Yuan Wang, Bin Yao, Huoqing Huang, Huiying Luo
    Bioresource Technology.2022; 364: 128027.     CrossRef
Comparative portrayal of ocular surface microbe with and without dry eye
ZhenHao Li , Yufang Gong , ShuZe Chen , SiQi Li , Yu Zhang , HuiMin Zhong , ZhouCheng Wang , YiFan Chen , QiXin Deng , YuTing Jiang , LiYing Li , Min Fu , GuoGuo Yi
J. Microbiol. 2019;57(11):1025-1032.   Published online August 28, 2019
DOI: https://doi.org/10.1007/s12275-019-9127-2
  • 51 View
  • 0 Download
  • 53 Web of Science
  • 56 Crossref
AbstractAbstract
To compare the ocular surface (OS) microbial communities and diversity between dry eye (DE) and non-DE (NDE). Furthermore, we compared meibomian gland dysfunction (MGD) and non-MGD (NMGD) among DE subjects. The V3-V4 region of 16S rRNA gene high-throughput sequencing was performed in the conjunctival swab samples to investigate the composition of the OS bacterial community in DE (n=35) and NDE (n=54) and compared the composition of MGD (n=25) and NMGD (n=10) among DE subjects. Deep sequencing of OS 16S rDNA from DE (n=35) and NDE (n=54) demonstrated great a difference in alpha and beta diversity between the OS bacterial flora (P < 0.05). The similar OS microbial structures were shown at the phylum and genus levels by bioinformatics analysis between them, and in LEfSe (linear discriminant analysis effect size) analysis, Bacteroidia and Bacteroidetes were enriched in DE, while Pseudomonas was plentiful in NDE (linear discriminant analysis [LDA] > 4.0). Among the DE group, there was no significant difference in α and β diversity between MGD and NMGD (P > 0.05). Surprisingly, Bacilli was the dominant microbe in MGD, and Bacteroidetes was the superior bacteria in NMGD among DE subjects (LDA > 4.0). Different diversity of OS bacteria composition between DE and NDE and the altered diversity of OS bacteria may play an important role in DE. Moreover, the lower dominance of OS bacteria in DE may be associated with the occurrence and development of DE. Although there was no significant difference in alpha and beta analysis, the OS dominant microbe between MGD and NMGD among DE was different.

Citations

Citations to this article as recorded by  
  • What is the impact of microbiota on dry eye: a literature review of the gut-eye axis
    Jiaping Song, He Dong, Tingting Wang, He Yu, Jian Yu, Shaokang Ma, Xiaohai Song, Qianhui Sun, Yongcheng Xu, Mingkai Liu
    BMC Ophthalmology.2024;[Epub]     CrossRef
  • Axis "microbiota – gut – eye": a review
    Irina N. Zakharova, Irina V. Berezhnaya, Diana K. Dmitrieva, Viktoria V. Pupykina
    Pediatrics. Consilium Medicum.2024; (2): 179.     CrossRef
  • Effects of dietary imbalances of micro- and macronutrients on the ocular microbiome and its implications in dry eye disease
    Madeline Pilkington, Declan Lloyd, Brad Guo, Stephanie L. Watson, Kenneth Gek-Jin Ooi
    Exploration of Medicine.2024; : 127.     CrossRef
  • Unique composition of ocular surface microbiome in the old patients with dry eye and diabetes mellitus in a community from Shanghai, China
    Zhangling Chen, Senlin Lin, Yi Xu, Lina Lu, Haidong Zou
    BMC Microbiology.2024;[Epub]     CrossRef
  • The Ocular Microbiome: Micro-Steps Towards Macro-Shift in Targeted Treatment? A Comprehensive Review
    Ewelina Trojacka, Justyna Izdebska, Jacek Szaflik, J. Przybek-Skrzypecka
    Microorganisms.2024; 12(11): 2232.     CrossRef
  • Ocular microbiota types and longitudinal microbiota alterations in patients with chronic dacryocystitis with and without antibiotic pretreatment
    Shengru Wu, Limin Zhu, Tingting Wang, Chenguang Zhang, Jiaqi Lin, Yanjin He, Junhu Yao, Tingting Lin, Juan Du
    iMetaOmics.2024;[Epub]     CrossRef
  • Review on the Treatment of Dry Eye Based on Intestinal Axial Theory
    伟琴 王
    Advances in Clinical Medicine.2024; 14(11): 152.     CrossRef
  • Longitudinal Changes of Ocular Surface Microbiome in Patients Undergoing Hemopoietic Stem Cell Transplant (HSCT)
    Suzanne Clougher, Marco Severgnini, Antonella Marangoni, Clarissa Consolandi, Tania Camboni, Sara Morselli, Mario Arpinati, Francesca Bonifazi, Michele Dicataldo, Tiziana Lazzarotto, Luigi Fontana, Piera Versura
    Journal of Clinical Medicine.2023; 13(1): 208.     CrossRef
  • Comparison of Conjunctival Sac Microbiome between Low and High Myopic Eyes
    Kang Xiao, Zhengyu Chen, Qin Long
    Journal of Microbiology.2023; 61(5): 571.     CrossRef
  • Metagenomic analysis of microbiological changes on the ocular surface of diabetic children and adolescents with a dry eye
    Zhangling Chen, Ying Xiao, Yan Jia, Qiurong Lin, Yu Qian, Lipu Cui, Zhaoyu Xiang, Mingfang Li, Chenhao Yang, Haidong Zou
    BMC Microbiology.2023;[Epub]     CrossRef
  • Contact lenses and ocular dysbiosis, from the transitory to the pathological
    B. Barrera, A. Bustamante, M. Marín-Cornuy, P. Aguila-Torres
    Archivos de la Sociedad Española de Oftalmología (English Edition).2023; 98(10): 586.     CrossRef
  • Investigating the Ocular Surface Microbiome: What Can It Tell Us?
    Virginie G Peter, Sophia C Morandi, Elio L Herzog, Martin S Zinkernagel, Denise C Zysset-Burri
    Clinical Ophthalmology.2023; Volume 17: 259.     CrossRef
  • Tear film microbiome in Sjogren’s and non-Sjogren’s aqueous deficiency dry eye
    Spandita Pal, Gorati Vani, Pragnya Rao Donthineni, Sayan Basu, Kotakonda Arunasri
    Indian Journal of Ophthalmology.2023; 71(4): 1566.     CrossRef
  • Lentes de contacto y disbiosis ocular, de lo transitorio a lo patológico
    B. Barrera, A. Bustamante, M. Marín-Cornuy, P. Aguila-Torres
    Archivos de la Sociedad Española de Oftalmología.2023; 98(10): 586.     CrossRef
  • Targeting the Gut–Eye Axis: An Emerging Strategy to Face Ocular Diseases
    Lucrezia Irene Maria Campagnoli, Angelica Varesi, Annalisa Barbieri, Nicoletta Marchesi, Alessia Pascale
    International Journal of Molecular Sciences.2023; 24(17): 13338.     CrossRef
  • Challenges and insights in the exploration of the low abundance human ocular surface microbiome
    Elio L. Herzog, Marco Kreuzer, Martin S. Zinkernagel, Denise C. Zysset-Burri
    Frontiers in Cellular and Infection Microbiology.2023;[Epub]     CrossRef
  • Ocular surface microbiota dysbiosis contributes to the high prevalence of dry eye disease in diabetic patients
    Qingyu An, Haidong Zou
    Critical Reviews in Microbiology.2023; 49(6): 805.     CrossRef
  • Meibomian Gland Dysfunction Clinical Practice Guidelines
    Shiro Amano, Jun Shimazaki, Norihiko Yokoi, Yuichi Hori, Reiko Arita, Hiroto Obata, Motoko Kawashima, Shizuka Koh, Takashi Suzuki, Tomo Suzuki, Masahiko Yamaguchi, Masakazu Yamada, Takashi Itokawa, Hiroko Iwashita, Tomohiko Usui, Miki Uchino, Fumika Oya,
    Japanese Journal of Ophthalmology.2023; 67(4): 448.     CrossRef
  • Effects of Carboxymethylcellulose Artificial Tears on Ocular Surface Microbiome Diversity and Composition, A Randomized Controlled Trial
    Yujia Zhou, Gurjit S. Sidhu, Joan A. Whitlock, Bishoy Abdelmalik, Zachary Mayer, Youlei Li, Gary P. Wang, Walter A. Steigleman
    Translational Vision Science & Technology.2023; 12(8): 5.     CrossRef
  • Impact of Exposomes on Ocular Surface Diseases
    Merrelynn Hong, Louis Tong, Jodhbir S. Mehta, Hon Shing Ong
    International Journal of Molecular Sciences.2023; 24(14): 11273.     CrossRef
  • The Microbiome, Ocular Surface, and Corneal Disorders
    Michael J. Zilliox, Charles S. Bouchard
    The American Journal of Pathology.2023; 193(11): 1648.     CrossRef
  • Ocular microbiome changes in dry eye disease and meibomian gland dysfunction
    Jerome Ozkan, Marwan E. Majzoub, Minas Coroneo, Torsten Thomas, Mark Willcox
    Experimental Eye Research.2023; 235: 109615.     CrossRef
  • An insight on the eye bacterial microbiota and its role on dry eye disease
    Joicye Hernández‐Zulueta, José Navarro‐Partida, Oscar Eduardo Sánchez‐Aguilar, Héctor Daniel Santa Cruz‐Pavlovich, Carlos Rodrigo Castro‐Castañeda, Alejandro González‐De la Rosa
    APMIS.2023; 131(3): 103.     CrossRef
  • Ocular conjunctival microbiome profiling in dry eye disease: A case control pilot study
    Noopur Gupta, Jyoti Chhibber-Goel, Yogita Gupta, Souvik Mukherjee, Arindam Maitra, Amit Sharma, Radhika Tandon
    Indian Journal of Ophthalmology.2023; 71(4): 1574.     CrossRef
  • Significantly different results in the ocular surface microbiome detected by tear paper and conjunctival swab
    Zhangling Chen, Zhaoyu Xiang, Lipu Cui, Xinran Qin, Shuli Chen, Huiyi Jin, Haidong Zou
    BMC Microbiology.2023;[Epub]     CrossRef
  • DNA extraction protocol impacts ocular surface microbiome profile
    Heleen Delbeke, Ingele Casteels, Marie Joossens
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Composition and diversity of meibum microbiota in meibomian gland dysfunction and the correlation with tear cytokine levels
    Ubonwan Rasaruck, Ngamjit Kasetsuwan, Thanachaporn Kittipibul, Pisut Pongchaikul, Tanittha Chatsuwan, Kofi Asiedu
    PLOS ONE.2023; 18(12): e0296296.     CrossRef
  • Visualization of normal ocular surface microflora via impression cytology sample using scanning electron microscopy with lanthanide contrasting
    M.V. Kravchik, E.S. Rodina, A.M. Subbot, O.I. Pimonova, E.I. Fettser, I.A. Novikov
    Vestnik oftal'mologii.2022; 138(6): 5.     CrossRef
  • The species-level microbiota of healthy eyes revealed by the integration of metataxonomics with culturomics and genome analysis
    Kui Dong, Ji Pu, Jing Yang, Guohong Zhou, Xuan Ji, Zhiming Kang, Juan Li, Min Yuan, Xiaoling Ning, Zhaoxia Zhang, XingYu Ma, Yanpeng Cheng, Hong Li, Qin Ma, Hong Li, Lijun Zhao, Wenjing Lei, Bin Sun, Jianguo Xu
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Metagenomic profiling of ocular surface microbiome changes in Demodex blepharitis patients
    Yana Fu, Jie Wu, Dandan Wang, Tiankun Li, Xinwei Shi, Lu Li, Minying Zhu, Zuhui Zhang, Xinxin Yu, Qi Dai
    Frontiers in Cellular and Infection Microbiology.2022;[Epub]     CrossRef
  • Comparison of the ocular surface microbiota between thyroid-associated ophthalmopathy patients and healthy subjects
    Xuan Ji, Kui Dong, Ji Pu, Jing Yang, Zhaoxia Zhang, Xiaoling Ning, Qin Ma, Zhiming Kang, Jianguo Xu, Bin Sun
    Frontiers in Cellular and Infection Microbiology.2022;[Epub]     CrossRef
  • Microbiological Characteristics of Ocular Surface Associated With Dry Eye in Children and Adolescents With Diabetes Mellitus
    Zhangling Chen, Yan Jia, Ying Xiao, Qiurong Lin, Yu Qian, Zhaoyu Xiang, Lipu Cui, Xinran Qin, Shuli Chen, Chenhao Yang, Haidong Zou
    Investigative Opthalmology & Visual Science.2022; 63(13): 20.     CrossRef
  • Analysis of Conjunctival Sac Microbiome in Dry Eye Patients With and Without Sjögren's Syndrome
    Hang Song, Kang Xiao, Zhengyu Chen, Qin Long
    Frontiers in Medicine.2022;[Epub]     CrossRef
  • Bacteria and Dry Eye: A Narrative Review
    Yuchen Wang, Yi Ding, Xiaodan Jiang, Jiarui Yang, Xuemin Li
    Journal of Clinical Medicine.2022; 11(14): 4019.     CrossRef
  • Eye Make-up Products and Dry Eye Disease: A Mini Review
    Mazyar Yazdani, Katja Benedikte Prestø Elgstøen, Tor Paaske Utheim
    Current Eye Research.2022; 47(1): 1.     CrossRef
  • The Role of the Ocular Surface Microbiome (OSM) in Diseases of the Anterior Segment and Ocular Surface
    Kara M. Cavuoto, Angela Y. Zhu
    Current Ophthalmology Reports.2022; 10(4): 179.     CrossRef
  • Effects of Sodium Hyaluronate Eye Drops With or Without Preservatives on Ocular Surface Bacterial Microbiota
    Yanlin Zhong, Xie Fang, Xuemei Wang, Yu-An Lin, Huping Wu, Cheng Li
    Frontiers in Medicine.2022;[Epub]     CrossRef
  • Ocular surface microbiota: Ophthalmic infectious disease and probiotics
    Ming-Cheng Chiang, Edward Chern
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • The Effect of Topical Anesthetics on 16S Ribosomal Ribonucleic Acid Amplicon Sequencing Results in Ocular Surface Microbiome Research
    Heleen Delbeke, Ingele Casteels, Marie Joossens
    Translational Vision Science & Technology.2022; 11(3): 2.     CrossRef
  • Shotgun metagenomic sequencing analysis of ocular surface microbiome in Singapore residents with mild dry eye
    Louis Tong, Florentin Constancias, Aihua Hou, Song Lin Chua, Daniela I. Drautz-Moses, Stephan Christoph Schuster, Liang Yang, Rohan B. H. Williams, Staffan Kjelleberg
    Frontiers in Medicine.2022;[Epub]     CrossRef
  • Characterization of Conjunctival Sac Microbiome from Patients with Allergic Conjunctivitis
    Hang Song, Kang Xiao, Hanyi Min, Zhengyu Chen, Qin Long
    Journal of Clinical Medicine.2022; 11(4): 1130.     CrossRef
  • Neutrophil Extracellular Traps (NETs) in Ocular Diseases: An Update
    Jia Zeng, Min Wu, Yamei Zhou, Manhui Zhu, Xiaojuan Liu
    Biomolecules.2022; 12(10): 1440.     CrossRef
  • Temporal impacts of topical ceftazidime and tobramycin-vancomycin mixtures on the ocular surface microbiota in rabbits
    Ran Xue, Qinghua Liu, Jingwei Li, Jinliang Jiang, Yan Zong, Xiuping Liu, Kaili Wu
    Experimental Eye Research.2022; 220: 109098.     CrossRef
  • Updates in diagnostics, treatments, and correlations between oral and ocular manifestations of Sjogren's syndrome
    Hassaam S. Choudhry, Shayan Hosseini, Hannaan S. Choudhry, Mahnaz Fatahzadeh, Reena Khianey, Mohammad H. Dastjerdi
    The Ocular Surface.2022; 26: 75.     CrossRef
  • Ocular Surface Microbiota in Contact Lens Users and Contact-Lens-Associated Bacterial Keratitis
    Jasmine Andersson, Josef K. Vogt, Marlene D. Dalgaard, Oluf Pedersen, Kim Holmgaard, Steffen Heegaard
    Vision.2021; 5(2): 27.     CrossRef
  • Ocular surface response of two preservative-free cylcosporine A emulsion eye drops in a mouse model of dry eye
    Philippe Daull, Takashi Nagano, Emilie Gros, Laurence Feraille, Stefano Barabino, Jean-Sébastien Garrigue
    Current Eye Research.2021; 46(8): 1096.     CrossRef
  • Comparison of the Ocular Microbiomes of Dry Eye Patients With and Without Autoimmune Disease
    Yun Qi, Yong Wan, Tianhui Li, Ming Zhang, Yu Song, Yaguang Hu, Yining Sun, Li Li
    Frontiers in Cellular and Infection Microbiology.2021;[Epub]     CrossRef
  • Ocular surface microbiota in patients with aqueous tear-deficient dry eye
    Jasmine Andersson, Josef K. Vogt, Marlene D. Dalgaard, Oluf Pedersen, Kim Holmgaard, Steffen Heegaard
    The Ocular Surface.2021; 19: 210.     CrossRef
  • Current knowledge on the human eye microbiome: a systematic review of available amplicon and metagenomic sequencing data
    Heleen Delbeke, Saif Younas, Ingele Casteels, Marie Joossens
    Acta Ophthalmologica.2021; 99(1): 16.     CrossRef
  • Ocular Surface Microbiota in Diabetic Patients With Dry Eye Disease
    Zhang Zhang, Xinrong Zou, Wenwen Xue, Pei Zhang, Shanshan Wang, Haidong Zou
    Investigative Opthalmology & Visual Science.2021; 62(12): 13.     CrossRef
  • Demodex Infection Changes Ocular Surface Microbial Communities, in Which Meibomian Gland Dysfunction May Play a Role
    Xiaotian Liang, Yingli Li, Ke Xiong, Shuze Chen, Zhenhao Li, Zhihan Zhang, Zhaoxia Xia, Guoguo Yi, Min Fu
    Ophthalmology and Therapy.2021; 10(3): 601.     CrossRef
  • The ocular surface immune system through the eyes of aging
    Jeremias G. Galletti, Cintia S. de Paiva
    The Ocular Surface.2021; 20: 139.     CrossRef
  • Safety and Tolerability of an Eye Drop Based on 0.6% Povidone–Iodine Nanoemulsion in Dry Eye Patients
    Giovanni William Oliverio, Rosaria Spinella, Elisa Imelde Postorino, Leandro Inferrera, Emanuela Aragona, Pasquale Aragona
    Journal of Ocular Pharmacology and Therapeutics.2021; 37(2): 90.     CrossRef
  • The ocular microbiome and microbiota and their effects on ocular surface pathophysiology and disorders
    Pasquale Aragona, Christophe Baudouin, Jose M. Benitez del Castillo, Elisabeth Messmer, Stefano Barabino, Jesus Merayo-Lloves, Francoise Brignole-Baudouin, Leandro Inferrera, Maurizio Rolando, Rita Mencucci, Maria Rescigno, Stefano Bonini, Marc Labetoulle
    Survey of Ophthalmology.2021; 66(6): 907.     CrossRef
  • Differences in the eyelid and buccal microbiome of glaucoma patients receiving long-term administration of prostaglandin analog drops
    Su-Ho Lim, Jong Hoon Shin, Ji-Woong Lee, Young Lee, Je Hyun Seo
    Graefe's Archive for Clinical and Experimental Ophthalmology.2021; 259(10): 3055.     CrossRef
  • Ocular Microbiota and Intraocular Inflammation
    Jing Jing Li, Sanjun Yi, Lai Wei
    Frontiers in Immunology.2020;[Epub]     CrossRef
Gramella fulva sp. nov., isolated from a dry surface of tidal flat
Sae Hyun Hwang , Woon Mo Hwang , Keunsoo Kang , Tae-Young Ahn
J. Microbiol. 2019;57(1):23-29.   Published online November 19, 2018
DOI: https://doi.org/10.1007/s12275-019-8370-x
  • 50 View
  • 0 Download
  • 8 Web of Science
  • 9 Crossref
AbstractAbstract
A novel Gram-stain-negative, aerobic, motile by means of gliding, and short rod-shaped bacterium, designated strain SH35T, was isolated from the dry surface of a tidal flat in Hwasung-si, South Korea. Growth occurred at 10–40°C (optimum 30°C), at pH 6.0–8.0 (optimum pH 7.0), in 1–12% NaCl (optimum 2%), and was inhibited in the absence of NaCl and Ca2+ ions. Phylogenetic analysis based on the 16S rRNA gene sequences showed that strain SH35T belonged to the genus Gramella and was a member of the family Flavobacteriaceae with highest sequence similarity to Gramella flava JLT2011T (96.1%), followed by Gramella oceani CCAMSZ- TT (95.6%), and 93.0–94.9% to other recognized Gramella species. The major cellular fatty acids (> 5% of the total) of strain SH35T were iso-C15:0, Iso-C16:0, anteiso-C15:0, iso-C17:0 3-OH and summed feature 9 (C16:0 10-methyl and/or C17:1 iso ω9с). The major polar lipids were phosphatidylethanolamine, two unidentified aminolipids and nine unidentified polar lipids. The major respiratory quinone and the predominant polyamine were menaquinone-6 (MK-6) and symhomospermidine, respectively. The DNA G + C content was 40.5 mol% (39.7% based on total genome calculations). Based on phylogenetic analysis and physiological and biochemical characterization, strain SH35T represents a novel species of the genus Gramella, for which the name Gramella fulva sp. nov. is proposed. The type strain is SH35T (= KACC 19447T = JCM 32369T).

Citations

Citations to this article as recorded by  
  • Gramella oceanisediminis sp. nov., isolated from deep-sea sediment of the Indian Ocean
    Lin Yang, Haolei Shi, Qian Li, Minggang Zheng, Qiliang Lai, Li Zheng
    International Journal of Systematic and Evolutionary Microbiology .2023;[Epub]     CrossRef
  • Proposal of Christiangramia gen. nov., Neomelitea gen. nov. and Nicoliella gen. nov. as replacement names for the illegitimate prokaryotic generic names Gramella Nedashkovskaya et al. 2005, Melitea Urios et al. 2008 and Nicolia Oliphant et al. 2022, respe
    Umakant Bhoopati Deshmukh, Aharon Oren
    International Journal of Systematic and Evolutionary Microbiology .2023;[Epub]     CrossRef
  • Gramella sediminis sp. nov., isolated from a tidal flat of the Yellow Sea
    Hui-Jing Niu, Kai-Shi Dong, Li Guan, Li-Ping Sun, Qin Wang, Yan-Jiao Zhang, Yi Li, Cheng-Qiang Xia, Cai-Xia Pei
    International Journal of Systematic and Evolutionary Microbiology.2022;[Epub]     CrossRef
  • Pyomelanin-Producing Brevundimonas vitisensis sp. nov., Isolated From Grape (Vitis vinifera L.)
    Lingmin Jiang, Doeun Jeon, Jueun Kim, Chul Won Lee, Yuxin Peng, Jiyoon Seo, Ju Huck Lee, Jin Hyub Paik, Cha Young Kim, Jiyoung Lee
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Saccharibacillus brassicae sp. nov., an endophytic bacterium isolated from kimchi cabbage (Brassica rapa subsp. pekinensis) seeds
    Lingmin Jiang, Chan Ju Lim, Song-Gun Kim, Jae Cheol Jeong, Cha Young Kim, Dae-Hyuk Kim, Suk Weon Kim, Jiyoung Lee
    Journal of Microbiology.2020; 58(1): 24.     CrossRef
  • Jejubacter calystegiae gen. nov., sp. nov., moderately halophilic, a new member of the family Enterobacteriaceae, isolated from beach morning glory
    Lingmin Jiang, Dexin Wang, Jung-Sook Lee, Dae-Hyuk Kim, Jae Cheol Jeong, Cha Young Kim, Suk Weon Kim, Jiyoung Lee
    Journal of Microbiology.2020; 58(5): 357.     CrossRef
  • List of new names and new combinations previously effectively, but not validly, published
    Aharon Oren, George Garrity
    International Journal of Systematic and Evolutionary Microbiology .2020; 70(3): 1443.     CrossRef
  • Neobacillus endophyticus sp. nov., an endophytic bacterium isolated from Selaginella involvens roots
    Lingmin Jiang, Myoung Hui Lee, Jae Cheol Jeong, Dae-Hyuk Kim, Cha Young Kim, Suk Weon Kim, Jiyoung Lee
    International Journal of Systematic and Evolutionary Microbiology .2019;[Epub]     CrossRef
  • Peribacillus faecalis sp. nov., a moderately halophilic bacterium isolated from the faeces of a cow
    Lingmin Jiang, Won Yong Jung, Zhun Li, Mi-Kyung Lee, Seung-Hwan Park, Se Won Kang, Jung-Sook Lee, Hyunjung Jung, Tai-Young Hur, Hyeun Bum Kim, Jae-Kyung Kim, Ju-Hoon Lee, Ju Huck Lee, Jiyoung Lee
    International Journal of Systematic and Evolutionary Microbiology .2019;[Epub]     CrossRef
Optimization of Enterobacter cloacae (KU923381) for diesel oil degradation using Response Surface Methodology (RSM)
Sugumar Ramasamy , Arumugam Arumugam , Preethy Chandran
J. Microbiol. 2017;55(2):104-111.   Published online January 26, 2017
DOI: https://doi.org/10.1007/s12275-017-6265-2
  • 48 View
  • 0 Download
  • 35 Crossref
AbstractAbstract
Efficiency of Enterobacter cloacae KU923381 isolated from petroleum hydrocarbon contaminated soil was evaluated in batch culture and bioreactor mode. The isolate were screened for biofilm formation using qualitative and quantitative assays. Response surface methodology (RSM) was used to study the effect of pH, temperature, glucose concentration, and sodium chloride on diesel degradation. The predicted values for diesel oil degradation efficiency by the statistical designs are in a close agreement with experimental data (R2 = 99.66%). Degradation efficiency is increased by 36.78% at pH = 7, temperature = 35°C, glucose = 5%, and sodium chloride concentration = 5%. Under the optimized conditions, the experiments were performed for diesel oil degradation by gas chromatographic mass spectrometric analysis (GC-MS). GC-MS analysis confirmed that E. cloacae had highly degrade hexadecane, heptadecane, tridecane, and docosane by 99.71%, 99.23%, 99.66%, and 98.34% respectively. This study shows that rapid bioremoval of hydrocarbons in diesel oil is acheived by E. cloacae with abet of biofilm formation. The potential use of the biofilms for preparing trickling filters (gravel particles) for the degradation of hydrocarbons from petroleum wastes before their disposal in the open environment is highly suggested. This is the first successful attempt for artificially establishing petroleum hydrocarbon degrading bacterial biofilm on solid substrates in bioreactor.

Citations

Citations to this article as recorded by  
  • Biodegradation of crude oil using bacterial strains isolated from the oil contaminated soil of Shakar Dara oil fields of Pakistan
    Shahrukh Bahar, Abdul Rehman, Muhammad Saqib Malik, Iffat Naz, Muhammad Jamil, Muhammad Anees
    Bioremediation Journal.2024; : 1.     CrossRef
  • Oilfield Carbonated Produced Water Recycling Coupled to Exopolysaccharide Transformation by Lelliottia amnigena
    Igor Carvalho Fontes Sampaio, Joalene de Azevedo Santos Ferreira, Pedro Jorge Louro Crugeira, Ian Mascena da Silva Oliveira, Jacson Nunes dos Santos, Josilene Borges Torres Lima Matos, Antonio Luiz Barbosa Pinheiro, Paulo Fernando de Almeida
    Waste and Biomass Valorization.2024; 15(3): 1309.     CrossRef
  • Increasing in situ bioremediation effectiveness through field-scale application of molecular biological tools
    Andrew S. Madison, Skyler J. Sorsby, Yingnan Wang, Trent A. Key
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Genomic and biotechnological potential of a novel oil-degrading strain Enterobacter kobei DH7 isolated from petroleum-contaminated soil
    Muhammad Zohaib Nawaz, Chunyan Xu, Majjid A. Qaria, Syed Zeeshan Haider, Hafiz Rameez Khalid, Huda Ahmed Alghamdi, Iqrar Ahmad Khan, Daochen Zhu
    Chemosphere.2023; 340: 139815.     CrossRef
  • Bioremediation of diesel oil: potential use of bacteria consortium Lactobacillus fermentum and Clostridium beijerinckii in degrading Total Petroleum Hydrocarbon (TPH)
    Naomi Oshin Laurensa Sipahutar, Lutfia Rahmiyati, Astri Rinanti, Melati Ferianita Fachrul, Astari Minarti
    IOP Conference Series: Earth and Environmental Science.2023; 1239(1): 012037.     CrossRef
  • Coupled reduction of structural Fe(III) in nontronite and oxidation of petroleum hydrocarbons
    Yuan Liu, Shengbao Shi, Qiang Zeng, Yang Li, Yu Chen, Dongyi Guo, Dafu Hu, Hailiang Dong
    Geochimica et Cosmochimica Acta.2023; 344: 103.     CrossRef
  • Microbes and microbial strategies in carcinogenic polycyclic aromatic hydrocarbons remediation: a systematic review
    Sandipan Banerjee, Nitu Gupta, Krishnendu Pramanik, Manash Gope, Richik GhoshThakur, Animesh Karmakar, Nayanmoni Gogoi, Raza Rafiqul Hoque, Narayan Chandra Mandal, Srinivasan Balachandran
    Environmental Science and Pollution Research.2023; 31(2): 1811.     CrossRef
  • Advanced bioremediation by an amalgamation of nanotechnology and modern artificial intelligence for efficient restoration of crude petroleum oil-contaminated sites: a prospective study
    Rupshikha Patowary, Arundhuti Devi, Ashis K. Mukherjee
    Environmental Science and Pollution Research.2023; 30(30): 74459.     CrossRef
  • Enhanced petroleum removal with a novel biosurfactant producer consortium isolated from drilling cuttings of offshore Akçakoca-5 in the Black Sea
    Sezen Bilen Ozyurek
    Geoenergy Science and Engineering.2023; 231: 212348.     CrossRef
  • Mycoremediation as a Potentially Promising Technology: Current Status and Prospects—A Review
    Stephen Okiemute Akpasi, Ifeanyi Michael Smarte Anekwe, Emmanuel Kweinor Tetteh, Ubani Oluwaseun Amune, Hassan Oriyomi Shoyiga, Thembisile Patience Mahlangu, Sammy Lewis Kiambi
    Applied Sciences.2023; 13(8): 4978.     CrossRef
  • Potential Egyptian bacterial consortium for oil spill treatment: A laboratory simulation
    Aya Elkemary, Samia S. Abouelkheir, Mostafa AbdelHakim, Soraya A. Sabry, Hanan A. Ghozlan
    Case Studies in Chemical and Environmental Engineering.2023; 7: 100278.     CrossRef
  • Use of Taguchi design for optimization of diesel-oil biodegradation using consortium of Pseudomonas stutzeri, Cellulosimicrobium cellulans, Acinetobacter baumannii and Pseudomonas balearica isolated from tarball in Terengganu Beach, Malaysia
    Bruno Martins Nkem, Normala Halimoon, Fatimah Md Yusoff, Wan Lutfi Wan Johari
    Journal of Environmental Health Science and Engineering.2022; 20(2): 729.     CrossRef
  • Optimization of the Biodegradation of Aliphatic, Aromatic, and UCM Hydrocarbons from Light Crude Oil in Marine Sediment Using Response Surface Methodology (RSM)
    Itzá García-Bautista, Ulises García-Cruz, Neith Pacheco, José Q. García-Maldonado, M. Leopoldina Aguirre-Macedo
    Bulletin of Environmental Contamination and Toxicology.2022; 108(1): 107.     CrossRef
  • ACTIVIDAD ANTIFÚNGICA Y CARACTERÍSTICAS DE PROMOCIÓN DE CRECIMIENTO VEGETAL DE Pseudomonas aeruginosa y Enterobacter sp. DEGRADADORAS DE HIDROCARBUROS AISLADAS DE SUELO CONTAMINADO
    Luis Enrique Flores Pantoja, Everardo Briseño Silva, Pedro Damián Loeza Lara, Rafael Jiménez Mejía
    Acta Biológica Colombiana.2022;[Epub]     CrossRef
  • Rhodococcus: A promising genus of actinomycetes for the bioremediation of organic and inorganic contaminants
    Mateus Torres Nazari, Viviane Simon, Bruna Strieder Machado, Larissa Crestani, Giovana Marchezi, Gustavo Concolato, Valdecir Ferrari, Luciane Maria Colla, Jeferson Steffanello Piccin
    Journal of Environmental Management.2022; 323: 116220.     CrossRef
  • Diesel degradation efficiency of Enterobacter sp., Acinetobacter sp., and Cedecea sp. isolated from petroleum waste dumping site: a bioremediation view point
    Israt Jerin, Md. Sifat Rahi, Tanjia Sultan, Md. Shihabul Islam, Salek Ahmed Sajib, Kazi Md. Faisal Hoque, Md Abu Reza
    Archives of Microbiology.2021; 203(8): 5075.     CrossRef
  • Bacteria, Fungi and Microalgae for the Bioremediation of Marine Sediments Contaminated by Petroleum Hydrocarbons in the Omics Era
    Filippo Dell’ Anno, Eugenio Rastelli, Clementina Sansone, Christophe Brunet, Adrianna Ianora, Antonio Dell’ Anno
    Microorganisms.2021; 9(8): 1695.     CrossRef
  • Isolation and Characterization of Oil-Degrading Enterobacter sp. from Naturally Hydrocarbon-Contaminated Soils and Their Potential Use against the Bioremediation of Crude Oil
    Mukkaram Ejaz, Baowei Zhao, Xiukang Wang, Safdar Bashir, Fasih Ullah Haider, Zubair Aslam, Muhammad Imran Khan, Muhammad Shabaan, Muhammad Naveed, Adnan Mustafa
    Applied Sciences.2021; 11(8): 3504.     CrossRef
  • Biodegradation of n-alkanes in crude oil by three identified bacterial strains
    Yuan Liu, Yun Yang Wan, Chunjiang Wang, Zheyu Ma, Xiaoli Liu, Shengjin Li
    Fuel.2020; 275: 117897.     CrossRef
  • Bioremoval of Acephate by biofilm-forming Enterobacter cloacae – VITDAJ8 in a vertical packed bed biofilm bioreactor
    Dipti Mayee Dash, Ankita Itusha, Jabez W Osborne
    Asia Pacific Journal of Molecular Biology and Biotechnology.2020; : 68.     CrossRef
  • Rapid biodegradation and biofilm-mediated bioremoval of organophosphorus pesticides using an indigenous Kosakonia oryzae strain -VITPSCQ3 in a Vertical-flow Packed Bed Biofilm Bioreactor
    Dipti Mayee Dash, W. Jabez Osborne
    Ecotoxicology and Environmental Safety.2020; 192: 110290.     CrossRef
  • Optimization of carbofuran insecticide degradation by Enterobacter sp. using response surface methodology (RSM)
    Mohammed Umar Mustapha, Normala Halimoon, Wan Lutfi Wan Johari, Mohd Yunus abd shokur
    Journal of King Saud University - Science.2020; 32(3): 2254.     CrossRef
  • Hexadecane biodegradation of high efficiency by bacterial isolates from Santos Basin sediments
    Vitor B. Ferrari, Augusto Cesar, Rodrigo Cayô, Rodrigo B. Choueri, Débora N. Okamoto, Juliana G. Freitas, Mariana Favero, Ana C. Gales, Cristina V. Niero, Flavia T. Saia, Suzan P. de Vasconcellos
    Marine Pollution Bulletin.2019; 142: 309.     CrossRef
  • Analysis of petroleum biodegradation by a bacterial consortium isolated from worms of the polychaeta class (Annelida): Implications for NPK fertilizer supplementation
    Carla Jaqueline Silva Sampaio, José Roberto Bispo de Souza, Gilson Correia de Carvalho, Cristina Maria Quintella, Milton Ricardo de Abreu Roque
    Journal of Environmental Management.2019; 246: 617.     CrossRef
  • Potential of bacteria isolated from diesel-contaminated seawater in diesel biodegradation
    Muhammad Fauzul Imron, Setyo Budi Kurniawan, Harmin Sulistiyaning Titah
    Environmental Technology & Innovation.2019; 14: 100368.     CrossRef
  • Isolation, identification, and characterization of diesel‐oil‐degrading bacterial strains indigenous to Changqing oil field, China
    Wuyang Sun, Imran Ali, Jiwei Liu, Min Dai, Wenrui Cao, Mingyu Jiang, Gaowa Saren, Xinke Yu, Changsheng Peng, Iffat Naz
    Journal of Basic Microbiology.2019; 59(7): 723.     CrossRef
  • The coordinated action of RNase III and RNase G controls enolase expression in response to oxygen availability in Escherichia coli
    Minho Lee, Minju Joo, Minji Sim, Se-Hoon Sim, Hyun-Lee Kim, Jaejin Lee, Minkyung Ryu, Ji-Hyun Yeom, Yoonsoo Hahn, Nam-Chul Ha, Jang-Cheon Cho, Kangseok Lee
    Scientific Reports.2019;[Epub]     CrossRef
  • RNase G controls tpiA mRNA abundance in response to oxygen availability in Escherichia coli
    Jaejin Lee, Dong-Ho Lee, Che Ok Jeon, Kangseok Lee
    Journal of Microbiology.2019; 57(10): 910.     CrossRef
  • Construction of potential bacterial consortia for efficient hydrocarbon degradation
    Kasturi Poddar, Debapriya Sarkar, Angana Sarkar
    International Biodeterioration & Biodegradation.2019; 144: 104770.     CrossRef
  • Optimization of diesel biodegradation by Vibrio alginolyticus using Box-Behnken design
    Muhammad Fauzul Imron, Harmin Sulistiyaning Titah
    Environmental Engineering Research.2018; 23(4): 374.     CrossRef
  • Process optimization of butachlor bioremediation by Enterobacter cloacae using Plackett Burman design and response surface methodology
    Satya Sundar Mohanty, Hara Mohan Jena
    Process Safety and Environmental Protection.2018; 119: 198.     CrossRef
  • Optimization of biodegradation of polycyclic aromatic sulfur heterocycles in soil using response surface methodology
    Shuiquan Chen, Shuo Sun, Chaocheng Zhao, Meng Zang, Qian Wang, Qiyou Liu, Lin Li
    Petroleum Science and Technology.2018; 36(22): 1883.     CrossRef
  • Fast Biodegradation of Diesel Hydrocarbons at High Concentration by the Sophorolipid-Producing Yeast Candida catenulata KP324968
    Faezeh Babaei, Alireza Habibi
    Microbial Physiology.2018; 28(5): 240.     CrossRef
  • Coliform Bacteria for Bioremediation of Waste Hydrocarbons
    Majida Khanafer, Husain Al-Awadhi, Samir Radwan
    BioMed Research International.2017; 2017: 1.     CrossRef
  • Degradation of diesel-oil by a newly isolated Kocuria sediminis DDK6
    Y. Z. Khalifa Ashraf
    African Journal of Microbiology Research.2017; 11(10): 400.     CrossRef
Review
MINIREVIEW] High-resolution imaging of the microbial cell surface
Ki Woo Kim
J. Microbiol. 2016;54(11):703-708.   Published online October 29, 2016
DOI: https://doi.org/10.1007/s12275-016-6348-5
  • 48 View
  • 0 Download
  • 11 Crossref
AbstractAbstract
Microorganisms, or microbes, can function as threatening pathogens that cause disease in humans, animals, and plants; however, they also act as litter decomposers in natural ecosystems. As the outermost barrier and interface with the environment, the microbial cell surface is crucial for cell-to-cell communication and is a potential target of chemotherapeutic agents. Surface ultrastructures of microbial cells have typically been observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Owing to its characteristics of low-temperature specimen preparation and superb resolution (down to 1 nm), cryo-field emission SEM has revealed paired rodlets, referred to as hydrophobins, on the cell walls of bacteria and fungi. Recent technological advances in AFM have enabled high-speed live cell imaging in liquid at the nanoscale level, leading to clear visualization of celldrug interactions. Platinum-carbon replicas from freeze-fractured fungal spores have been observed using transmission electron microscopy, revealing hydrophobins with varying dimensions. In addition, AFM has been used to resolve bacteriophages in their free state and during infection of bacterial cells. Various microscopy techniques with enhanced spatial resolution, imaging speed, and versatile specimen preparation are being used to document cellular structures and events, thus addressing unanswered biological questions.

Citations

Citations to this article as recorded by  
  • Application of advanced bioimaging technologies in viral infections
    Yu Sun, Can Cao, Yilin Peng, Xuyao Dai, Xiaoke Li, Jing Li, Tengxiao Liang, Ping Song, Yongan Ye, Jinsheng Yang, Ning Li, Ruodan Xu
    Materials Today Physics.2024; 46: 101488.     CrossRef
  • Potential role of intratumor bacteria outside the gastrointestinal tract: More than passengers
    Zhu Liu, Lian‐Lian Hong, Zhi‐Qiang Ling
    Cancer Medicine.2023; 12(16): 16756.     CrossRef
  • The photothermal effect of polypyrrole modified gold nanoparticles on SKOV-3 cells using SEM and AFM
    C Z Liu, Y X Huang, C R Zhao, Z B Wang
    Journal of Physics: Conference Series.2021; 1777(1): 012019.     CrossRef
  • Cell mechanics characteristics of anti-HER2 modified PPy@GNPs and its photothermal treatment of SKOV-3 cells
    Chuanzhi Liu, Chunru Zhao, Yuxi Huang, Haiyan Li, Xuan Guo, Zuobin Wang
    Applied Nanoscience.2021; 11(3): 911.     CrossRef
  • Guidelines for a Morphometric Analysis of Prokaryotic and Eukaryotic Cells by Scanning Electron Microscopy
    Dominika Czerwińska-Główka, Katarzyna Krukiewicz
    Cells.2021; 10(12): 3304.     CrossRef
  • Using Atomic Force Microscopy To Illuminate the Biophysical Properties of Microbes
    John W. Goss, Catherine B. Volle
    ACS Applied Bio Materials.2020; 3(1): 143.     CrossRef
  • Evaluating Efficacy of Antimicrobial and Antifouling Materials for Urinary Tract Medical Devices: Challenges and Recommendations
    Madeleine Ramstedt, Isabel A. C. Ribeiro, Helena Bujdakova, Filipe J. M. Mergulhão, Luisa Jordao, Peter Thomsen, Martin Alm, Mette Burmølle, Todorka Vladkova, Fusun Can, Meital Reches, Martijn Riool, Alexandre Barros, Rui L. Reis, Emilio Meaurio, Judith K
    Macromolecular Bioscience.2019;[Epub]     CrossRef
  • Cell biology of microbes and pharmacology of antimicrobial drugs explored by Atomic Force Microscopy
    Cécile Formosa-Dague, Raphaël Emmanuel Duval, Etienne Dague
    Seminars in Cell & Developmental Biology.2018; 73: 165.     CrossRef
  • The Role of Glycans in Bacterial Adhesion to Mucosal Surfaces: How Can Single-Molecule Techniques Advance Our Understanding?
    Cécile Formosa-Dague, Mickaël Castelain, Hélène Martin-Yken, Karen Dunker, Etienne Dague, Marit Sletmoen
    Microorganisms.2018; 6(2): 39.     CrossRef
  • SEM imaging of the stimulatory response of RAW264.7 cells against Porphyromonas gingivalis using a simple technique employing new conductive materials
    Chisato Takahashi, Yoshiki Umemura, Ayako Naka, Hiromitsu Yamamoto
    Journal of Biomedical Materials Research Part B: Applied Biomaterials.2018; 106(3): 1280.     CrossRef
  • A Cryosectioning Technique for the Observation of Intracellular Structures and Immunocytochemistry of Tissues in Atomic Force Microscopy (AFM)
    Eiji Usukura, Akihiro Narita, Akira Yagi, Nobuaki Sakai, Yoshitsugu Uekusa, Yuka Imaoka, Shuichi Ito, Jiro Usukura
    Scientific Reports.2017;[Epub]     CrossRef
Journal Article
Application of Response Surface Methodology for Rapid Chrysene Biodegradation by Newly Isolated Marine-derived Fungus Cochliobolus lunatus Strain CHR4D
Jwalant K. Bhatt , Chirag M. Ghevariya , Dushyant R. Dudhagara , Rahul K. Rajpara , Bharti P. Dave
J. Microbiol. 2014;52(11):908-917.   Published online October 31, 2014
DOI: https://doi.org/10.1007/s12275-014-4137-6
  • 52 View
  • 0 Download
  • 16 Crossref
AbstractAbstract
For the first time, Cochliobolus lunatus strain CHR4D, a marine-derived ascomycete fungus isolated from historically contaminated crude oil polluted shoreline of Alang-Sosiya ship-breaking yard, at Bhavnagar coast, Gujarat has been reported showing the rapid and enhanced biodegradation of chrysene, a four ringed high molecular weight (HMW) polycyclic aromatic hydrocarbon (PAH). Mineral Salt Broth (MSB) components such as ammonium tartrate and glucose along with chrysene, pH and trace metal solution have been successfully optimized by Response Surface Methodology (RSM) using central composite design (CCD). A validated, two-step optimization protocol has yielded a substantial 93.10% chrysene degradation on the 4th day, against unoptimized 56.37% degradation on the 14th day. The results depict 1.65 fold increase in chrysene degradation and 1.40 fold increase in biomass with a considerable decrement in time. Based on the successful laboratory experiments, C. lunatus strain CHR4D can thus be predicted as a potential candidate for mycoremediation of HMW PAHs impacted environments.

Citations

Citations to this article as recorded by  
  • Optimization of anthracene biodegradation by indigenous Trichoderma lixii and Talaromyces pinophilus using response surface methodology
    Samson O. Egbewale, Ajit Kumar, Mduduzi P. Mokoena, Ademola O. Olaniran
    Ecotoxicology and Environmental Safety.2025; 289: 117431.     CrossRef
  • Application of ANN, hypothesis testing and statistics to the adsorptive removal of toxic dye by nanocomposite
    Thamraa Alshahrani, Ganesh Jethave, Anil Nemade, Yogesh Khairnar, Umesh Fegade, Monali Khachane, Amir Al-Ahmed, Firoz Khan
    Chemometrics and Intelligent Laboratory Systems.2024; 249: 105132.     CrossRef
  • Diversity, Lifestyle, Genomics, and Their Functional Role of Cochliobolus, Bipolaris, and Curvularia Species in Environmental Remediation and Plant Growth Promotion under Biotic and Abiotic Stressors
    Nasir Ali Khan, Sajjad Asaf, Waqar Ahmad, Rahmatullah Jan, Saqib Bilal, Ibrahim Khan, Abdul Latif Khan, Kyung-Min Kim, Ahmed Al-Harrasi
    Journal of Fungi.2023; 9(2): 254.     CrossRef
  • Marine-derived fungi as biocatalysts
    Jorge R. Virués-Segovia, Salvador Muñoz-Mira, Rosa Durán-Patrón, Josefina Aleu
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Bioactive compounds of Curvularia species as a source of various biological activities and biotechnological applications
    Tushar Mehta, Mukesh Meena, Adhishree Nagda
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Biodegradation of fluorene by the newly isolated marine-derived fungus, Mucor irregularis strain bpo1 using response surface methodology
    Paul Olusegun Bankole, Kirk Taylor Semple, Byong-Hun Jeon, Sanjay Prabhu Govindwar
    Ecotoxicology and Environmental Safety.2021; 208: 111619.     CrossRef
  • Chemo-metric engineering designs for deciphering the biodegradation of polycyclic aromatic hydrocarbons
    Darshita Ketan Pandya, Madhava Anil Kumar
    Journal of Hazardous Materials.2021; 411: 125154.     CrossRef
  • Combination of matrix solid phase dispersion and response surface evaluation for simultaneous detections of multiple bioactive constituents of traditional Chinese medicine formula: Using Baoyuan Capsule as an example
    Qiaohui Du, Ruixia Deng, Chong Gao, Jiangang Shen
    Journal of Pharmaceutical and Biomedical Analysis.2020; 190: 113495.     CrossRef
  • Enhancement of Antibacterial Activity of Paludifilum halophilum and Identification of N-(1-Carboxy-ethyl)-phthalamic Acid as the Main Bioactive Compound
    Donyez Frikha-Dammak, Jawhar Fakhfakh, Dalel Belhaj, Emna Bouattour, Houda Ayadi, Moncef Chaabouni, Habib Ayadi, Sami Maalej
    BioMed Research International.2020; 2020: 1.     CrossRef
  • Oil-Spill Triggered Shift in Indigenous Microbial Structure and Functional Dynamics in Different Marine Environmental Matrices
    C. S. Neethu, C. Saravanakumar, R. Purvaja, R. S. Robin, R. Ramesh
    Scientific Reports.2019;[Epub]     CrossRef
  • Biotechnological application of endophytic filamentous bipolaris and curvularia: a review on bioeconomy impact
    Louis Bengyella, Sehrish Iftikhar, Kiran Nawaz, Dobgima J. Fonmboh, Elsie L. Yekwa, Robinson C. Jones, Yiboh M. T. Njanu, Pranab Roy
    World Journal of Microbiology and Biotechnology.2019;[Epub]     CrossRef
  • Biodegradation of anthracene and several PAHs by the marine-derived fungus Cladosporium sp. CBMAI 1237
    Willian G. Birolli, Darlisson de A. Santos, Natália Alvarenga, Anuska C.F.S. Garcia, Luciane P.C. Romão, André L.M. Porto
    Marine Pollution Bulletin.2018; 129(2): 525.     CrossRef
  • Polycyclic aromatic hydrocarbons (PAHs) at the Gulf of Kutch, Gujarat, India: Occurrence, source apportionment, and toxicity of PAHs as an emerging issue
    Rahul K. Rajpara, Dushyant R. Dudhagara, Jwalant K. Bhatt, Haren B. Gosai, Bharti P. Dave
    Marine Pollution Bulletin.2017; 119(2): 231.     CrossRef
  • Response surface methodology: A non-conventional statistical tool to maximize the throughput ofStreptomycesspecies biomass and their bioactive metabolites
    Selvanathan Latha, Govindhan Sivaranjani, Dharumadurai Dhanasekaran
    Critical Reviews in Microbiology.2017; 43(5): 567.     CrossRef
  • Bioengineering for polycyclic aromatic hydrocarbon degradation by Mycobacterium litorale: Statistical and artificial neural network (ANN) approach
    Dushyant R. Dudhagara, Rahul K. Rajpara, Jwalant K. Bhatt, Haren B. Gosai, Bharti P. Dave
    Chemometrics and Intelligent Laboratory Systems.2016; 159: 155.     CrossRef
  • Polyhydroxyalkanoate from marine Bacillus megaterium using CSMCRI's Dry Sea Mix as a novel growth medium
    Jaykishan H. Dhangdhariya, Sonam Dubey, Hiral B. Trivedi, Imran Pancha, Jwalant K. Bhatt, Bharti P. Dave, Sandhya Mishra
    International Journal of Biological Macromolecules.2015; 76: 254.     CrossRef
Research Support, Non-U.S. Gov'ts
Surface Display Expression of Bacillus licheniformis Lipase in Escherichia coli Using Lpp’OmpA Chimera
Jae-Hyung Jo , Chan-Wook Han , Seung-Hwan Kim , Hyuk-Jin Kwon , Hyune-Hwan Lee
J. Microbiol. 2014;52(10):856-862.   Published online August 27, 2014
DOI: https://doi.org/10.1007/s12275-014-4217-7
  • 46 View
  • 0 Download
  • 15 Crossref
AbstractAbstract
The lipase from Bacillus licheniformis ATCC14580 was displayed on the cell surface of Escherichia coli using Lpp’OmpA as the anchoring protein. The expressed Lpp’OmpA-lipase fusion protein has a molecular weight of approximately 35 kDa, which was confirmed by SDS-PAGE and western blot analysis. The Lpp’OmpA-lipase fusion protein was located on the cell surface, as determined by immunofluorescence confocal microscopy and flow cytometry. The enzyme activity of the surface-displayed lipase showed clear halo around the colony. The cell surface-displayed lipase showed the highest activity of 248.12 ± 9.42 U/g (lyophilized cell) at the optimal temperature of 37°C and pH 8.0. The enzyme exhibited the highest activity toward the substrate p-nitrophenyl caprylate (C8). These results suggest that E. coli, which displayed the lipase on its surface, could be used as a whole cell biocatalyst.

Citations

Citations to this article as recorded by  
  • Recent advances in bioinspired multienzyme engineering for food applications
    Xianhan Chen, Yujin Chen, Dandan Tang, Mengyu Li, Yuting Lu, Yi Cao, Quanyu Zhao, Shuai Jiang, Wei Liu, Ling Jiang
    Trends in Food Science & Technology.2025; 156: 104840.     CrossRef
  • Surface Engineering of Escherichia coli to Display Its Phytase (AppA) and Functional Analysis of Enzyme Activities
    Patricia L. A. Muñoz-Muñoz, Celina Terán-Ramírez, Rosa E. Mares-Alejandre, Ariana B. Márquez-González, Pablo A. Madero-Ayala, Samuel G. Meléndez-López, Marco A. Ramos-Ibarra
    Current Issues in Molecular Biology.2024; 46(4): 3424.     CrossRef
  • Characterization of a novel subfamily 1.4 lipase from Bacillus licheniformis IBRL-CHS2: Cloning and expression optimization
    Ammar Khazaal Kadhim Almansoori, Nidyaletchmy Subba Reddy, Mustafa Abdulfattah, Sarah Solehah Ismail, Rashidah Abdul Rahim, Estibaliz Sansinenea
    PLOS ONE.2024; 19(12): e0314556.     CrossRef
  • Surface Display of Multiple Metal-Binding Domains in Deinococcus radiodurans Alleviates Cadmium and Lead Toxicity in Rice
    Liangyan Wang, Yudong Wang, Shang Dai, Binqiang Wang
    International Journal of Molecular Sciences.2024; 25(23): 12570.     CrossRef
  • A bacterial outer membrane vesicle-based click vaccine elicits potent immune response against Staphylococcus aureus in mice
    Jingjing Sun, Xuansheng Lin, Yige He, Baozhong Zhang, Nan Zhou, Jian-dong Huang
    Frontiers in Immunology.2023;[Epub]     CrossRef
  • Establishment of a soluble expression and rapid purification system for self-assembling protein nanoparticle and characterization of its physiochemical properties
    Dan Wang, Linwei Duan, Min Wei, Baizhu Chen, Zhipeng Li, Qingyou Liu
    Biochemical Engineering Journal.2022; 186: 108580.     CrossRef
  • A Modular System for the Rapid Comparison of Different Membrane Anchors for Surface Display on Escherichia coli
    Sabrina Gallus, Esther Mittmann, Kersten S. Rabe
    ChemBioChem.2022;[Epub]     CrossRef
  • Decorating the surface of Escherichia coli with bacterial lipoproteins: a comparative analysis of different display systems
    Sonia Nicchi, Maria Giuliani, Fabiola Giusti, Laura Pancotto, Domenico Maione, Isabel Delany, Cesira L. Galeotti, Cecilia Brettoni
    Microbial Cell Factories.2021;[Epub]     CrossRef
  • Recombinant expression and surface display of a zearalenone lactonohydrolase from Trichoderma aggressivum in Escherichia coli
    Shurong Chen, Li Pan, Siying Liu, Lijie Pan, Xuejie Li, Bin Wang
    Protein Expression and Purification.2021; 187: 105933.     CrossRef
  • Bacterial Cell Display as a Robust and Versatile Platform for Engineering Low‐Affinity Ligands and Enzymes
    Eszter Csibra, Marleen Renders, Vitor B. Pinheiro
    ChemBioChem.2020; 21(19): 2844.     CrossRef
  • Surface Display of Complex Enzymes by in Situ SpyCatcher‐SpyTag Interaction
    Sabrina Gallus, Theo Peschke, Malte Paulsen, Teresa Burgahn, Christof M. Niemeyer, Kersten S. Rabe
    ChemBioChem.2020; 21(15): 2126.     CrossRef
  • Shaking Rate during Production Affects the Activity of Escherichia coli Surface-Displayed Candida antarctica Lipase A
    Chen-Fu Chung, Shih-Che Lin, Tzong-Yuan Juang, Yung-Chuan Liu
    Catalysts.2020; 10(4): 382.     CrossRef
  • Functional Display of an Amoebic Chitinase in Escherichia coli Expressing the Catalytic Domain of EhCHT1 on the Bacterial Cell Surface
    Ricardo Torres-Bañaga, Rosa E. Mares-Alejandre, Celina Terán-Ramírez, Ana L. Estrada-González, Patricia L.A. Muñoz-Muñoz, Samuel G. Meléndez-López, Ignacio A. Rivero, Marco A. Ramos-Ibarra
    Applied Biochemistry and Biotechnology.2020; 192(4): 1255.     CrossRef
  • Heterologous expression of antigenic peptides in Bacillus subtilis biofilms
    Cédric M. Vogt, Elisabeth M. Schraner, Claudio Aguilar, Catherine Eichwald
    Microbial Cell Factories.2016;[Epub]     CrossRef
  • Display of Fungi Xylanase on Escherichia coli Cell Surface and Use of the Enzyme in Xylan Biodegradation
    Wei Qu, Yuanxia Xue, Qiang Ding
    Current Microbiology.2015; 70(6): 779.     CrossRef
Enhanced Production of Carboxymethylcellulase by a Marine Bacterium, Bacillus velezensis A-68, by Using Rice Hulls in Pilot-scale Bioreactor under Optimized Conditions for Dissolved Oxygen
Wa Gao , Hye-Jin Kim , Chung-Han Chung , Jin-Woo Lee
J. Microbiol. 2014;52(9):755-761.   Published online July 30, 2014
DOI: https://doi.org/10.1007/s12275-014-4156-3
  • 46 View
  • 0 Download
  • 8 Crossref
AbstractAbstract
The optimal conditions for the production of carboxymethylcellulase (CMCase) by Bacillus velezensis A-68 at a flask scale have been previously reported. In this study, the parameters involved in dissolved oxygen in 7 and 100 L bioreactors were optimized for the pilot-scale production of CMCase. The optimal agitation speed and aeration rate for cell growth of B. velezensis A-68 were 323 rpm and 1.46 vvm in a 7 L bioreactor, whereas those for the production of CMCase were 380 rpm and 0.54 vvm, respectively. The analysis of variance (ANOVA) implied that the highly significant factor for cell growth was the aeration rate, whereas that for the production of CMCase was the agitation speed. The optimal inner pressures for cell growth and the production of CMCase by B. velezensis A-68 in a 100 L bioreactor were 0.00 and 0.04 MPa, respectively. The maximal production of CMCase in a 100 L bioreactor under optimized conditions using rice hulls was 108.1 U/ml, which was 1.8 times higher than that at a flask scale under previously optimized conditions.

Citations

Citations to this article as recorded by  
  • Utilization of shrimp heads for scaling up of production of Bacillus velezensis EB.KN15, its bioactive compounds and novel anti-fungal effect against durian pathogen fungi
    Van Anh Ngo, San-Lang Wang, Van Bon Nguyen, Tu Quy Phan, Thi Ha Trang Tran, Manh Dung Doan, Dinh Sy Nguyen, Anh Dzung Nguyen
    Research on Chemical Intermediates.2024; 50(10): 5061.     CrossRef
  • Production and stability of a multi-strain Bacillus based probiotic product for commercial use in poultry
    Uraisha Ramlucken, Santosh O. Ramchuran, Ghaneshree Moonsamy, Christine Jansen van Rensburg, Mapitsi S. Thantsha, Rajesh Lalloo
    Biotechnology Reports.2021; 29: e00575.     CrossRef
  • Killing effect of deinoxanthins on cyanobloom-forming Microcystis aeruginosa: Eco-friendly production and specific activity of deinoxanthins
    Wonjae Kim, Minkyung Kim, Minyoung Hong, Woojun Park
    Environmental Research.2021; 200: 111455.     CrossRef
  • Biochemical and Molecular Characterization of Five Bacillus Isolates Displaying Remarkable Carboxymethyl Cellulase Activities
    Esraa Abd Elhameed, Alaa R. M. Sayed, Tharwat E. E. Radwan, Gamal Hassan
    Current Microbiology.2020; 77(10): 3076.     CrossRef
  • Enhanced Production of Carboxymethylcellulase by Recombinant Escherichia coli Strain from Rice Bran with Shifts in Optimal Conditions of Aeration Rate and Agitation Speed on a Pilot-Scale
    Chung-Il Park, Jae-Hong Lee, Jianhong Li, Jin-Woo Lee
    Applied Sciences.2019; 9(19): 4083.     CrossRef
  • Characteristics and Application of a Novel Species of Bacillus: Bacillus velezensis
    Miao Ye, Xiangfang Tang, Ru Yang, Hongfu Zhang, Fangshu Li, Fangzheng Tao, Fei Li, Zaigui Wang
    ACS Chemical Biology.2018; 13(3): 500.     CrossRef
  • Comparison of optimal conditions for mass production of carboxymethylcellulase by Escherichia coli JM109/A-68 with other recombinants in pilot-scale bioreactor
    Myung-Hwan Kim, Wa Gao, Chung-Han Chung, Jin-Woo Lee
    Biotechnology and Bioprocess Engineering.2017; 22(2): 142.     CrossRef
  • Construction of a recombinant Escherichia coli JM109/A-68 for production of carboxymethylcellulase and comparison of its production with its wild type, Bacillus velezensis A-68 in a pilot-scale bioreactor
    Myung-Hwan Kim, Duk-Un Kang, Jin-Woo Lee
    Biotechnology and Bioprocess Engineering.2016; 21(5): 601.     CrossRef
Journal Article
Application of Statistical Experimental Design for Optimization of Silver Nanoparticles Biosynthesis by a Nanofactory Streptomyces viridochromogenes
Noura El-Ahmady El-Naggar , Nayera A.M. Abdelwahed
J. Microbiol. 2014;52(1):53-63.   Published online January 4, 2014
DOI: https://doi.org/10.1007/s12275-014-3410-z
  • 45 View
  • 0 Download
  • 61 Crossref
AbstractAbstract
Central composite design was chosen to determine the combined effects of four process variables (AgNO3 concentration, incubation period, pH level and inoculum size) on the extracellular biosynthesis of silver nanoparticles (AgNPs) by Streptomycesviridochromogenes. Statistical analysis of the results showed that incubation period, initial pH level and inoculum size had significant effects (P􌥑0.05) on the biosynthesis of silver nanoparticles at their individual level. The maximum biosynthesis of silver nanoparticles was achieved at a concentration of 0.5% (v/v) of 1 mM AgNO3, incubation period of 96 h, initial pH of 9 and inoculum size of 2% (v/v). After optimization, the biosynthesis of silver nanoparticles was improved by approximately 5-fold as compared to that of the unoptimized conditions. The synthetic process of silver nanoparticle generation using the reduction of aqueous Ag+ ion by the culture supernatants of S. viridochromogenes was quite fast, and silver nanoparticles were formed immediately by the addition of AgNO3 solution (1 mM) to the cell-free supernatant. Initial characterization of silver nanoparticles was performed by visual observation of color change from yellow to intense brown color. UV-visible spectrophotometry for measuring surface plasmon resonance showed a single absorption peak at 400 nm, which confirmed the presence of silver nanoparticles. Fourier Transform Infrared Spectroscopy analysis provided evidence for proteins as possible reducing and capping agents for stabilizing the nanoparticles. Transmission Electron Microscopy revealed the extracellular formation of spherical silver nanoparticles in the size range of 2.15–7.27 nm. Compared to the cell-free supernatant, the biosynthesized AgNPs revealed superior antimicrobial activity against Gram-negative, Gram-positive bacterial strains and Candida albicans.

Citations

Citations to this article as recorded by  
  • Myco-Biosynthesis of Silver Nanoparticles, Optimization, Characterization, and In Silico Anticancer Activities by Molecular Docking Approach against Hepatic and Breast Cancer
    Noura El-Ahmady El-Naggar, Nada S. Shweqa, Hala M. Abdelmigid, Amal A. Alyamani, Naglaa Elshafey, Hoda M. Soliman, Yasmin M. Heikal
    Biomolecules.2024; 14(9): 1170.     CrossRef
  • Application of quality by design in optimization of nanoformulations: Principle, perspectives and practices
    Devendra Birla, Nikhil Khandale, Bushra Bashir, Md. ShahbazAlam, Sukriti Vishwas, Gaurav Gupta, Harish Dureja, Popat S. Kumbhar, John Disouza, Vandana Patravale, Francisco Veiga, Ana Cláudia Paiva-Santos, Ramkumar Pillappan, Keshav Raj Paudel, Bey Hing Go
    Drug Delivery and Translational Research.2024;[Epub]     CrossRef
  • Fabrication of polydopamine-functionalized nanobioconjugates for improved stability and catalytic efficiency towards industrial application
    Rukhma, Manahil Ghazi, Aqsa Mujahid, Hamid Mukhtar, Abid Sarwar, Najeeb Ullah, Tariq Aziz, Metab Alharbi, Abdullah F. Alasmari, Thamer H Albekairi
    Biomass Conversion and Biorefinery.2024; 14(13): 15129.     CrossRef
  • A sustainable green-approach for biofabrication of chitosan nanoparticles, optimization, characterization, its antifungal activity against phytopathogenic Fusarium culmorum and antitumor activity
    Noura El-Ahmady El-Naggar, Alaa M. Shiha, Hoda Mahrous, A. B. Abeer Mohammed
    Scientific Reports.2024;[Epub]     CrossRef
  • Streptomyces griseorubens as a microbial cell factory for extracellular uricase production and bioprocess optimization using statistical approach
    Noura El-Ahmady El-Naggar, Sara M. El-Ewasy, Nancy M. El-Shweihy
    Microbial Cell Factories.2024;[Epub]     CrossRef
  • Green synthesis of collagen nanoparticles by Streptomyces xinghaiensis NEAA-1, statistical optimization, characterization, and evaluation of their anticancer potential
    Asmaa A. El-Sawah, Noura El-Ahmady El-Naggar, Heba E. Eldegla, Hoda M. Soliman
    Scientific Reports.2024;[Epub]     CrossRef
  • Biofabrication of TiO2 nanoparticles via Aspergillus niger DS22 supernatant: bioreactor optimization and multi-activity profiling
    Dalia K. Abd El Hamid, Enayat M. Desouky, Sawsan Abd Ellatif, Nermine N. Abed, Amira Y. Mahfouz
    Biomass Conversion and Biorefinery.2024;[Epub]     CrossRef
  • Process optimization for gold nanoparticles biosynthesis by Streptomyces albogriseolus using artificial neural network, characterization and antitumor activities
    Noura El-Ahmady El-Naggar, Asmaa A. El-Sawah, Mohamed F. Elmansy, Omar T. Elmessiry, Mohanad E. El-Saidy, Mostafa K. El-Sherbeny, Mohamed T. Sarhan, Aya Amin Elhefnawy, Shimaa R. Dalal
    Scientific Reports.2024;[Epub]     CrossRef
  • Bioactive Streptomycetes: A Powerful Tool to Synthesize Diverse Nanoparticles With Multifarious Properties
    Muhammad Sultan Anjum, Shazia Khaliq, Neelma Ashraf, Munir Ahmad Anwar, Kalsoom Akhtar
    Journal of Basic Microbiology.2024;[Epub]     CrossRef
  • Fungal carbonatogenesis process mediates zinc and chromium removal via statistically optimized carbonic anhydrase enzyme
    Naira A. Awadeen, Marwa Eltarahony, Sahar Zaki, Amany Yousef, Samy El-Assar, Hadeel El-Shall
    Microbial Cell Factories.2024;[Epub]     CrossRef
  • Bionanofactory for green synthesis of collagen nanoparticles, characterization, optimization, in-vitro and in-vivo anticancer activities
    Asmaa A. El-Sawah, Noura El-Ahmady El-Naggar, Heba E. Eldegla, Hoda M. Soliman
    Scientific Reports.2024;[Epub]     CrossRef
  • Development and optimization of Clitoria teratea synthesized silver nanoparticles and its application to nanogel systems for wound healing
    Richa Jain, Ruchi Singh, Reena Badhwar, Tinku Gupta, Harvinder Popli
    Drug Development and Industrial Pharmacy.2024; 50(3): 181.     CrossRef
  • Optimization of Bacillus subtilis growth parameters for biosynthesis of silver nanoparticles by using response surface methodology
    Magda A. El-Bendary, Salwa S. Afifi, Maysa E. Moharam, Mostafa M. Abo Elsoud, Noha A. Gawdat
    Preparative Biochemistry & Biotechnology.2023; 53(2): 183.     CrossRef
  • Green synthesis of CuO nanoparticles for biological applications
    Baranya Murugan, Md Zillur Rahman, Is Fatimah, J. Anita Lett, Jamespandi Annaraj, Noor Haida Mohd Kaus, Mohammed A. Al-Anber, Suresh Sagadevan
    Inorganic Chemistry Communications.2023; 155: 111088.     CrossRef
  • Green fabrication of chitosan nanoparticles using Lavendula angustifolia, optimization, characterization and in‑vitro antibiofilm activity
    Noura El-Ahmady El-Naggar, Marwa Eltarahony, Elsayed E. Hafez, Shimaa I. Bashir
    Scientific Reports.2023;[Epub]     CrossRef
  • Biologically synthesized Copper Nanoparticles from S. epidermidis on resistant S. aureus and cytotoxic assay
    Zahraa H. Kadhim1, Mais E. Ahmed, Ilker Şimşek
    Bionatura.2023; 8(CSS 1): 1.     CrossRef
  • Full Factorial Design Synthesis of Silver Nanoparticles Using Origanum vulgare
    Nickolas Rigopoulos, Christina Megetho Gkaliouri, Viktoria Sakavitsi, Dimitrios Gournis
    Reactions.2023; 4(3): 505.     CrossRef
  • Centella asiatica crop residue fabricated silver nanoparticles as potent antioxidant agents in photo-catalytic degradation of hazardous dyes
    Rashmi Venkatasubbaiah, Prakash Kumar Jha, Konasur Rajesh Sanjay
    Chemical Engineering Communications.2022; 209(7): 938.     CrossRef
  • Antioxidant and Antibacterial Activities of Silver Nanoparticles Biosynthesized by Moringa oleifera through Response Surface Methodology
    A. B. Abeer Mohammed, Amr Mohamed, Noura El-Ahmady El-Naggar, Hoda Mahrous, Ghada M. Nasr, Asmaa Abdella, Rasha H. Ahmed, Sibel Irmak, Mohamed S. A. Elsayed, Samy Selim, Amr Elkelish, Dalal Hussien M. Alkhalifah, Wael N. Hozzein, Abdallah S. Ali, José Agu
    Journal of Nanomaterials.2022;[Epub]     CrossRef
  • On Recent Developments in Biosynthesis and Application of Au and Ag Nanoparticles from Biological Systems
    Ashutosh Kumar Verma, P. Kumar, Nour Sh. El-Gendy
    Journal of Nanotechnology.2022; 2022: 1.     CrossRef
  • Green synthesis, characterization and applications of iron and zinc nanoparticles by probiotics
    Andrea Gomez-Zavaglia, Lucia Cassani, Elvira María Hebert, Esteban Gerbino
    Food Research International.2022; 155: 111097.     CrossRef
  • Innovative biosynthesis, artificial intelligence-based optimization, and characterization of chitosan nanoparticles by Streptomyces microflavus and their inhibitory potential against Pectobacterium carotovorum
    Noura El-Ahmady El-Naggar, Shimaa I. Bashir, Nashwa H. Rabei, WesamEldin I. A. Saber
    Scientific Reports.2022;[Epub]     CrossRef
  • Optimization of Bacillus subtilis NRC1 growth conditions using response surface methodology for sustainable biosynthesis of gold nanoparticles
    Magda A. El-Bendary, Salwa S. Afifi, Maysa E. Moharam, Mostafa M. Abo Elsoud, Noha A. Gawdat
    Scientific Reports.2022;[Epub]     CrossRef
  • Green Synthesis and Characterization of Titanium Nanoparticles Using Microalga, Phaeodactylum tricornutum
    Gulizar Caliskan, Tugce Mutaf, Hasan Cenk Agba, Murat Elibol
    Geomicrobiology Journal.2022; 39(1): 83.     CrossRef
  • Biosynthesis of Copper Oxide Nanoparticles Using Streptomyces MHM38 and Its Biological Applications
    Sarah I. Bukhari, Moaz M. Hamed, Mohamed H. Al-Agamy, Hanaa S. S. Gazwi, Hesham H. Radwan, Asmaa M. Youssif, Shahid Ali
    Journal of Nanomaterials.2021; 2021: 1.     CrossRef
  • Design of experiments (DoE) to develop and to optimize nanoparticles as drug delivery systems
    Marcela Tavares Luiz, Juliana Santos Rosa Viegas, Juliana Palma Abriata, Felipe Viegas, Fabiana Testa Moura de Carvalho Vicentini, Maria Vitória Lopes Badra Bentley, Marlus Chorilli, Juliana Maldonado Marchetti, Delia Rita Tapia-Blácido
    European Journal of Pharmaceutics and Biopharmaceutics.2021; 165: 127.     CrossRef
  • Antibacterial, Antifungal and Antibiofilm Activities of Silver Nanoparticles Supported by Crude Bioactive Metabolites of Bionanofactories Isolated from Lake Mariout
    Marwa Eltarahony, Amany Ibrahim, Hadeel El-shall, Eman Ibrahim, Fayez Althobaiti, Eman Fayad
    Molecules.2021; 26(10): 3027.     CrossRef
  • Actinomycete strain type determines the monodispersity and antibacterial properties of biogenically synthesized silver nanoparticles
    Mostafa Mabrouk, Tarek A. Elkhooly, Shaimaa K. Amer
    Journal of Genetic Engineering and Biotechnology.2021; 19(1): 57.     CrossRef
  • Gümüş Nanoparçacıklarının Kribbella turkmenica 16K104 Aracılığıyla Sentezi, Karakterizasyonu, Antimikrobiyal Aktivitesinin Belirlenmesi ve Genotoksik Potansiyelinin Değerlendirilmesi
    Serpil KÖNEN ADIGÜZEL, Ali Osman ADIGÜZEL, Tuğba ÇELİK
    Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi.2021; 11(4): 3138.     CrossRef
  • Silver nanoparticles biosynthesized from secondary metabolite producing marine actinobacteria and evaluation of their biomedical potential
    Ashia Alam, Faouzia Tanveer, Ali Talha Khalil, Tanzeel Zohra, Saleh Khamlich, Muhammad Masroor Alam, Muhammad Salman, Muhammad Ali, Aamer Ikram, Zabta Khan Shinwari, Malik Maaza
    Antonie van Leeuwenhoek.2021; 114(10): 1497.     CrossRef
  • Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth
    Noura El-Ahmady El-Naggar, Mervat H. Hussein, Sami A. Shaaban-Dessuuki, Shimaa R. Dalal
    Scientific Reports.2020;[Epub]     CrossRef
  • Phytomediated Photo-Induced Green Synthesis of Silver Nanoparticles Using Matricaria chamomilla L. and Its Catalytic Activity against Rhodamine B
    Abdulmohsen Ali Alshehri, Maqsood Ahmad Malik
    Biomolecules.2020; 10(12): 1604.     CrossRef
  • Comparative study of antibiofilm activity and physicochemical properties of microelectrode arrays
    Taraneh Javanbakht, Bahareh Ghane-Motlagh, Mohamad Sawan
    Microelectronic Engineering.2020; 229: 111305.     CrossRef
  • Chicken Tallow, a Renewable Source for the Production of Biosurfactant by Yarrowia lipolytica MTCC9520, and its Application in Silver Nanoparticle Synthesis
    Panjanathan Radha, Priya Suhazsini, Keerthana Prabhu, Anjali Jayakumar, Ramani Kandasamy
    Journal of Surfactants and Detergents.2020; 23(1): 119.     CrossRef
  • Optimization of Enterobacter cloacae mediated synthesis of extracellular silver nanoparticles by response surface methodology and their characterization
    Noreen Ashraf, Fiaz Ahmad, Chen Jing Jie, Zhang Tuo Di, Zhao Feng-Zhu, Da-Chuan Yin
    Particulate Science and Technology.2020; 38(8): 931.     CrossRef
  • l ‐asparaginase production and enhancement by Sarocladium strictum : In vitro evaluation of anti‐cancerous properties
    A. Golbabaie, H. Nouri, H. Moghimi, A. Khaleghian
    Journal of Applied Microbiology.2020; 129(2): 356.     CrossRef
  • Optimization of carbofuran insecticide degradation by Enterobacter sp. using response surface methodology (RSM)
    Mohammed Umar Mustapha, Normala Halimoon, Wan Lutfi Wan Johari, Mohd Yunus abd shokur
    Journal of King Saud University - Science.2020; 32(3): 2254.     CrossRef
  • Comparative Study of Physicochemical Properties and Antibiofilm Activity of Graphene Oxide Nanoribbons
    T. Javanbakht, H. Hadian, K. J. Wilkinson
    Journal of Engineering Sciences.2020; 7(1): C1.     CrossRef
  • Bacterial biosynthesis of nanosilver: a green catalyst for the synthesis of (amino pyrazolo)-(phenyl)methyl naphth-2-ol derivatives and their antimicrobial potential
    Ganji Praveena, Swetha Yagnam, Linga Banoth, Rajiv Trivedi, Reddy Shetty Prakasham
    New Journal of Chemistry.2020; 44(30): 13046.     CrossRef
  • Synthesis and characterization of size- and shape-controlled silver nanoparticles
    Suparna Mukherji, Sharda Bharti, Gauri Shukla, Soumyo Mukherji
    Physical Sciences Reviews.2019;[Epub]     CrossRef
  • Optimization of Silver Nanoparticle Synthesis by Banana Peel Extract Using Statistical Experimental Design, and Testing of their Antibacterial and Antioxidant Properties
    Nickolas Rigopoulos, Eleni Thomou, Αntonios Kouloumpis, Eleni Rafaela Lamprou, Varvara Petropoulea, Dimitrios Gournis, Efthymios Poulios, Haralampos C. Karantonis, Efstathios Giaouris
    Current Pharmaceutical Biotechnology.2019; 20(10): 858.     CrossRef
  • Biological synthesis of metallic nanoparticles (MNPs) by plants and microbes: their cellular uptake, biocompatibility, and biomedical applications
    Fiaz Ahmad, Noreen Ashraf, Tayyba Ashraf, Ren-Bin Zhou, Da-Chuan Yin
    Applied Microbiology and Biotechnology.2019; 103(7): 2913.     CrossRef
  • Bacteria and nanosilver: the quest for optimal production
    Thomas Mabey, Domenico Andrea Cristaldi, Petra Oyston, Karl P. Lymer, Eugen Stulz, Sandra Wilks, Charles William Keevil, Xunli Zhang
    Critical Reviews in Biotechnology.2019; 39(2): 272.     CrossRef
  • Cyanobacterial extract-mediated synthesis of silver nanoparticles and their application in ammonia sensing
    Anuj Kumar Tomer, Tanveer Rahi, Deepesh Kumar Neelam, Pawan K Dadheech
    International Microbiology.2019; 22(1): 49.     CrossRef
  • Genotoxic, cytotoxic, antimicrobial and antioxidant properties of gold nanoparticles synthesized by Nocardia sp. GTS18 using response surface methodology
    Serpil Könen-Adıgüzel, Ali Osman Adıgüzel, Hilal Ay, Soner Alpdoğan, Nevzat Şahin, Ayten Çaputçu, Remziye Serap Ergene, Hülya Metin Gübür, Münir Tunçer
    Materials Research Express.2018; 5(11): 115402.     CrossRef
  • Biosynthesis of silver nanoparticles from the novel strain of Streptomyces Sp. BHUMBU-80 with highly efficient electroanalytical detection of hydrogen peroxide and antibacterial activity
    Rajeev Kumar Gupta, Vijay Kumar, Ravi Kumar Gundampati, Manisha Malviya, Syed Hadi Hasan, Medicherla V. Jagannadham
    Journal of Environmental Chemical Engineering.2017; 5(6): 5624.     CrossRef
  • Evaluation of the Xanthan-Based Film Incorporated with Silver Nanoparticles for Potential Application in the Nonhealing Infectious Wound
    Jinjian Huang, Jianan Ren, Guopu Chen, Youming Deng, Gefei Wang, Xiuwen Wu
    Journal of Nanomaterials.2017; 2017: 1.     CrossRef
  • Optimization ofL-asparaginase production from novelEnterobactersp., by submerged fermentation using response surface methodology
    Rajeswara Reddy Erva, Ajgebi Nath Goswami, Priyanka Suman, Ravali Vedanabhatla, Satish Babu Rajulapati
    Preparative Biochemistry & Biotechnology.2017; 47(3): 219.     CrossRef
  • Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotxicity
    Noura El-Ahmady El-Naggar, Mervat H. Hussein, Asmaa Atallah El-Sawah
    Scientific Reports.2017;[Epub]     CrossRef
  • The Application of Mediated Biosynthesized Green Silver Nanoparticles by Streptomyces griseorubens in Water Treatment
    Moustafa Y. El-Naggar, Wegdan Ramadan, Ramy A. El-Hamamsy
    Journal of Pure and Applied Microbiology.2017; 11(2): 685.     CrossRef
  • Optimization of protein loaded PLGA nanoparticle manufacturing parameters following a quality-by-design approach
    V. Sainz, C. Peres, T. Ciman, C. Rodrigues, A. S. Viana, C. A. M. Afonso, T. Barata, S. Brocchini, M. Zloh, R. S. Gaspar, H. F. Florindo, J. A. Lopes
    RSC Advances.2016; 6(106): 104502.     CrossRef
  • Optimization of process variables for the biosynthesis of silver nanoparticles by Aspergillus wentii using statistical experimental design
    Supratim Biswas, Antoine F Mulaba-Bafubiandi
    Advances in Natural Sciences: Nanoscience and Nanotechnology.2016; 7(4): 045005.     CrossRef
  • Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13
    Hanan M. Abd-Elnaby, Gehan M. Abo-Elala, Usama M. Abdel-Raouf, Moaz M. Hamed
    Egyptian Journal of Aquatic Research.2016; 42(3): 301.     CrossRef
  • Biogenic Synthesis and Structural Characterization of Polyshaped Gold Nanoparticles Using Leaf Extract of Swertia chirata Along with Process Optimization by Response Surface Methodology (RSM)
    Nirlipta Saha, S. Dutta Gupta
    Journal of Cluster Science.2016; 27(4): 1419.     CrossRef
  • Surface Plasmon Resonance (SPR) Based Optimization of Biosynthesis of Silver Nanoparticles from Rhizome Extract of Curculigo orchioides Gaertn. and Its Antioxidant Potential
    Nirlipta Saha, Priyanka Trivedi, S. Dutta Gupta
    Journal of Cluster Science.2016; 27(6): 1893.     CrossRef
  • Extracellular Biofabrication, Characterization, and Antimicrobial Efficacy of Silver Nanoparticles Loaded on Cotton Fabrics Using Newly IsolatedStreptomycessp. SSHH-1E
    Noura El-Ahmady El-Naggar, Attiya Mohamedin, Sarah Shawqi Hamza, Abdel-Dayem Sherief
    Journal of Nanomaterials.2016; 2016: 1.     CrossRef
  • Isolation, Screening and Identification of Actinobacteria with Uricase Activity: Statistical Optimization of Fermentation Conditions for Improved Production of Uricase by Streptomyces rochei NEAE-25
    Noura El-Ahmady El-Naggar
    International Journal of Pharmacology.2015; 11(7): 644.     CrossRef
  • Identification of Newly IsolatedTalaromyces pinophilusand Statistical Optimization of β-Glucosidase Production Under Solid-State Fermentation
    Noura El-Ahmady El-Naggar, S. A. Haroun, Eman A. Oweis, A. A. Sherief
    Preparative Biochemistry and Biotechnology.2015; 45(7): 712.     CrossRef
  • Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications
    Richa Singh, Utkarsha U. Shedbalkar, Sweety A. Wadhwani, Balu A. Chopade
    Applied Microbiology and Biotechnology.2015; 99(11): 4579.     CrossRef
  • Optimization of Culture Conditions for Production of the Anti-Leukemic Glutaminase Free L-Asparaginase by Newly IsolatedStreptomyces olivaceusNEAE-119 Using Response Surface Methodology
    Noura El-Ahmady El-Naggar, Hassan Moawad, Nancy M. El-Shweihy, Sara M. El-Ewasy
    BioMed Research International.2015; 2015: 1.     CrossRef
  • Microbial L-asparaginase as a Potential Therapeutic Agent for the Treatment of Acute Lymphoblastic Leukemia: The Pros and Cons
    Noura El-Ahmady El-Nagga, Sara M. El-Ewasy, Nancy M. El-Shweihy
    International Journal of Pharmacology.2014; 10(4): 182.     CrossRef
Research Support, Non-U.S. Gov'ts
Surface Display of the HPV L1 Capsid Protein by the Autotransporter Shigella IcsA
Dan Xu , Xiaofeng Yang , Depu Wang , Jun Yu , Yili Wang
J. Microbiol. 2014;52(1):77-82.   Published online January 4, 2014
DOI: https://doi.org/10.1007/s12275-014-3235-9
  • 48 View
  • 0 Download
  • 3 Crossref
AbstractAbstract
Autotransporters have become attractive tools for surface expression of foreign proteins in Gram-negative bacteria. In this study, the Shigella autotransporter IcsA, has been exploited to express the human papillomavirus (HPV) type 16 L1 capsid protein in Shigella sonnei and Escherichia coli. The L1 gene was fused in-frame to replace the coding sequence of the IcsA passenger domain that is responsible for actin-based motility. The resultant hybrid protein could be detected by an anti-L1 antibody on the surface of S. sonnei and E. coli. In E. coli, the protein was expressed on the entire surface of the bacterium. In contrast, the protein was detected mainly at one pole of the Shigella bacterium. However, the protein became evenly distributed on the surface of the Shigella bacterium when the icsP gene was removed. Our study demonstrated the possibility of exploiting autotransporters for surface expression of large, heterologous viral proteins, which may be a useful strategy for vaccine development.

Citations

Citations to this article as recorded by  
  • The Trimeric Autotransporter Adhesin SadA from Salmonella spp. as a Novel Bacterial Surface Display System
    Shuli Sang, Wenge Song, Lu Lu, Qikun Ou, Yiyan Guan, Haoxia Tao, Yanchun Wang, Chunjie Liu
    Vaccines.2024; 12(4): 399.     CrossRef
  • The Shigella ProU system is required for osmotic tolerance and virulence
    Rasha Y. Mahmoud, Wenqin Li, Ramadan A. Eldomany, Mohamed Emara, Jun Yu
    Virulence.2017; 8(4): 362.     CrossRef
  • The Multivalent Adhesion Molecule SSO1327 plays a key role in Shigella sonnei pathogenesis
    Rasha Y. Mahmoud, Daniel Henry Stones, Wenqin Li, Mohamed Emara, Ramadan A. El‐domany, Depu Wang, Yili Wang, Anne Marie Krachler, Jun Yu
    Molecular Microbiology.2016; 99(4): 658.     CrossRef
Cell-Surface Expression of Aspergillus saitoi-Derived Functional α-1,2-Mannosidase on Yarrowia lipolytica for Glycan Remodeling
Hye Yun Moon , Trinh Luu Van , Seon Ah Cheon , Jinho Choo , Jeong-Yoon Kim , Hyun Ah Kang
J. Microbiol. 2013;51(4):506-514.   Published online August 30, 2013
DOI: https://doi.org/10.1007/s12275-013-3344-x
  • 42 View
  • 0 Download
  • 13 Crossref
AbstractAbstract
Expression of proteins on the surface of yeast has a wide range of applications, such as development of live vaccines, screening of antibody libraries, and use as whole-cell biocatalysts. The hemiascomycetes yeast Yarrowia lipolytica has been raised as a potential host for heterologous expression of recombinant proteins. In this study, we report the expression of Aspergillus saitoi α-1,2-mannosidase, encoded by the msdS gene, on the cell surface of Y. lipolytica. As the first step to achieve the secretory expression of msdS protein, four different signal sequences-derived from the endogenous Y. lipolytica Lip2 and Xpr2 prepro regions and the heterologous A. niger α-amylase and rice α-amylase signal sequences-were analyzed for their secretion efficiency. It was shown that the YlLip2 prepro sequence was most efficient in directing the secretory expression of msdS in fully N-glycosylated forms. The surface display of msdS was subsequently directed by fusing GPI anchoring motifs derived from Y. lipolytica cell wall proteins, YlCwp1p and YlYwp1p, respectively, to the C-terminus of the Lip2 prepro-msdS protein. The expression of actively functional msdS protein on the cell surface was confirmed by western blot, flow cytometry analysis, along with the α-1,2-mannosidase activity assay using intact Y. lipolytica cells as the enzyme source. Furthermore, the glycoengineered Y. lipolytica Δoch1Δmpo1 strains displaying α-1,2-mannosidase were able to convert Man8GlcNAc2 to Man5GlcNAc2 efficiently on their cell-wall mannoproteins, demonstrating its potential used for glycoengineering in vitro or in vivo.

Citations

Citations to this article as recorded by  
  • Engineering novel Yarrowia lipolytica whole-cell biocatalysts by cell surface display of the native Lip2 lipase for biodiesel production
    Maria Orfanidou, Eleftheria Panagiotidou, Antonios M. Makris, Eleni Theodosiou
    Biotechnology for the Environment.2025;[Epub]     CrossRef
  • Yeast Surface Display System: Strategies for Improvement and Biotechnological Applications
    Karla V. Teymennet-Ramírez, Fernando Martínez-Morales, María R. Trejo-Hernández
    Frontiers in Bioengineering and Biotechnology.2022;[Epub]     CrossRef
  • Dietary intake of GDF11 delays the onset of several biomarkers of aging in male mice through anti-oxidant system via Smad2/3 pathway
    Lili Song, Fei Wu, Congjun Li, Shicui Zhang
    Biogerontology.2022; 23(3): 341.     CrossRef
  • Hydrolytic secretome engineering in Yarrowia lipolytica for consolidated bioprocessing on polysaccharide resources: review on starch, cellulose, xylan, and inulin
    Ewelina Celińska, Jean-Marc Nicaud, Wojciech Białas
    Applied Microbiology and Biotechnology.2021; 105(3): 975.     CrossRef
  • Yarrowia lipolytica Strains and Their Biotechnological Applications: How Natural Biodiversity and Metabolic Engineering Could Contribute to Cell Factories Improvement
    Catherine Madzak
    Journal of Fungi.2021; 7(7): 548.     CrossRef
  • Engineering Yarrowia lipolytica for Use in Biotechnological Applications: A Review of Major Achievements and Recent Innovations
    Catherine Madzak
    Molecular Biotechnology.2018; 60(8): 621.     CrossRef
  • Synthetic biology tools for engineering Yarrowia lipolytica
    M. Larroude, T. Rossignol, J.-M. Nicaud, R. Ledesma-Amaro
    Biotechnology Advances.2018; 36(8): 2150.     CrossRef
  • Development of recombinant Yarrowia lipolytica producing virus-like particles of a fish nervous necrosis virus
    Van-Trinh Luu, Hye Yun Moon, Jee Youn Hwang, Bo-Kyu Kang, Hyun Ah Kang
    Journal of Microbiology.2017; 55(8): 655.     CrossRef
  • Using a vector pool containing variable-strength promoters to optimize protein production in Yarrowia lipolytica
    Rémi Dulermo, François Brunel, Thierry Dulermo, Rodrigo Ledesma-Amaro, Jérémy Vion, Marion Trassaert, Stéphane Thomas, Jean-Marc Nicaud, Christophe Leplat
    Microbial Cell Factories.2017;[Epub]     CrossRef
  • Yarrowia lipolytica: recent achievements in heterologous protein expression and pathway engineering
    Catherine Madzak
    Applied Microbiology and Biotechnology.2015; 99(11): 4559.     CrossRef
  • Biotechnological applications of Yarrowia lipolytica: Past, present and future
    Hu-Hu Liu, Xiao-Jun Ji, He Huang
    Biotechnology Advances.2015; 33(8): 1522.     CrossRef
  • Functional characterization of extracellular chitinase encoded by the YlCTS1 gene in a dimorphic yeast Yarrowia lipolytica
    Jeong-Nam Park, Chang Pyo Han, Dong-Jik Lee, Seon Ah Cheon, Hyun Ah Kang
    Journal of Microbiology.2014; 52(4): 284.     CrossRef
  • Characterization of putative glycosylphosphatidylinositol-anchoring motifs for surface display in the methylotrophic yeast Hansenula polymorpha
    Seon Ah Cheon, Jinhee Jung, Jin Ho Choo, Doo-Byoung Oh, Hyun Ah Kang
    Biotechnology Letters.2014; 36(10): 2085.     CrossRef
Research Support, U.S. Gov't, Non-P.H.S.
NOTE] Fosmid Cloning, Nucleotide Sequence, and Characterization of a Beta-Lactamase Gene from Subsurface Isolates
Nurcan Vardar , Gönül Vardar-Schara
J. Microbiol. 2012;50(4):680-683.   Published online July 21, 2012
DOI: https://doi.org/10.1007/s12275-012-2139-9
  • 26 View
  • 0 Download
AbstractAbstract
A beta-lactamase gene was isolated for the first time from a terrestrial subsurface environment using a combined cultivation and direct cloning strategy. The gene, discovered from 24 m below land surface in Hawaii, was most similar to the penicillinase from Bacillus licheniformis. The resistance gene was confirmed via subcloning and its minimum inhibitory concentration values were measured against several test betalactam antibiotics. This study extends the knowledge on resistance to antimicrobials, which may help the efforts to minimize their future threat.

Journal of Microbiology : Journal of Microbiology
TOP