Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "surfactin"
Filter
Filter
Article category
Keywords
Publication year
Research Support, Non-U.S. Gov'ts
Antifungal Activity and Mechanism of Fengycin in the Presence and Absence of Commercial Surfactin Against Rhizopus stolonifer
Yang Tao , Xiao-mei Bie , Feng-xia Lv , Hai-zhen Zhao , Zhao-xin Lu
J. Microbiol. 2011;49(1):146-150.   Published online March 3, 2011
DOI: https://doi.org/10.1007/s12275-011-0171-9
  • 27 View
  • 0 Download
  • 81 Scopus
AbstractAbstract
The antifungal activity and mechanism of fengycin in the presence and absence of commercial surfactin against Rhizopus stolonifer were investigated. The MIC (minimal inhibitory concentration) of fengycin without commercial surfactin added was 0.4 mg/ml while the MIC of fengycin with commercial surfactin added was 2.0 mg/ml. Fengycin acted on cell membrane and cellular organs and inhibited DNA synthesis. The antifungal effect of fengycin was reduced after commercial surfactin was added. All these results suggest that the fungal cell membrane may be the primary target of fengycin action and commercial surfactin may reduce the antifungal activity of fengycin.
Evaluation of Antagonistic Activities of Bacillus subtilis and Bacillus licheniformis Against Wood-Staining Fungi: In Vitro and In Vivo Experiments
Natarajan Velmurugan , Mi Sook Choi , Sang-Sub Han , Yang-Soo Lee
J. Microbiol. 2009;47(4):385-392.   Published online September 9, 2009
DOI: https://doi.org/10.1007/s12275-009-0018-9
  • 37 View
  • 0 Download
  • 29 Scopus
AbstractAbstract
The antifungal activity of bacterial strains Bacillus subtilis EF 617317 and B. licheniformis EF 617325 was demonstrated against sapstaining fungal cultures Ophiostoma flexuosum, O. tetropii, O. polonicum, and O. ips in both in vitro and in vivo conditions. The crude active supernatant fractions of 7 days old B. subtilis and B. licheniformis cultures inhibited the growth of sapstaining fungi in laboratory experiments. Thermostability and pH stability of crude supernatants were determined by series of experiments. FT-IR analysis was performed to confirm the surface structural groups of lipoproteins present in the crude active supernatant. Partial purification of lipopeptides present in the crude supernatant was done by using Cellulose anion exchange chromatography and followed by Sephadex gel filtration chromatography. Partially purified compounds significantly inhibited the sapstaining fungal growth by in vitro analysis. The lipopeptides responsible for antifungal activity were identified by electrospray ionization mass spectrometry after partial purification by ion exchange and gel filtration chromatography. Four major ion peaks were identified as m/z 1023, 1038, 1060, and 1081 in B. licheniformis and 3 major ion peaks were identified as m/z 1036, 1058, and 1090 in B. subtilis. In conclusion, the partially purified lipopeptides may belong to surfactin and iturin family. In vivo analysis for antifungal activity of lipopeptides on wood was conducted in laboratory. In addition, the potential of extracts for fungal inhibition on surface and internal part of wood samples were analyzed by scanning electron microscopy.

Journal of Microbiology : Journal of Microbiology
TOP