Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "temperature"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Genetic and Functional Characterization of a Salicylate 1‑monooxygenase Located on an Integrative and Conjugative Element (ICE) in Pseudomonas stutzeri AJR13
Igor Ivanovski , Gerben J. Zylstra
J. Microbiol. 2023;61(12):1025-1032.   Published online December 15, 2023
DOI: https://doi.org/10.1007/s12275-023-00093-x
  • 25 View
  • 0 Download
AbstractAbstract
Pseudomonas stutzeri strain AJR13 was isolated for growth on the related compounds biphenyl (BPH) and diphenylmethane (DPM). The BPH and DPM degradative pathway genes are present on an integrative and conjugative element (ICE) in the chromosome. Examination of the genome sequence of AJR13 revealed a gene encoding a salicylate 1-monooxygenase (salA) associated with the ICE even though AJR13 did not grow on salicylate. Transfer of the ICE to the well-studied Pseudomonas putida KT2440 resulted in a KT2440 strain that could grow on salicylate. Knockout mutagenesis of the salA gene on the ICE in KT2440 eliminated the ability to grow on salicylate. Complementation of the knockout with the cloned salA gene restored growth on salicylate. Transfer of the cloned salA gene under control of the lac promoter to KT2440 resulted in a strain that could grow on salicylate. Heterologous expression of the salA gene in E. coli BL21 DE3 resulted in the production of catechol from salicylate, confirming that it is indeed a salicylate 1-monooxygenase. Interestingly, transfer of the cloned salA gene under control of the lac promoter to AJR13 resulted in a strain that could now grow on salicylate, suggesting that gene expression for the downstream catechol pathway is intact.
Rasiella rasia gen. nov. sp. nov. within the family Flavobacteriaceae isolated from seawater recirculating aquaculture system
Seong-Jin Kim , Young-Sam Kim , Sang-Eon Kim , Hyun-Kyoung Jung , Jeeeun Park , Min-Ju Yu , Kyoung-Ho Kim
J. Microbiol. 2022;60(11):1070-1076.   Published online October 17, 2022
DOI: https://doi.org/10.1007/s12275-022-2099-7
  • 17 View
  • 0 Download
  • 1 Citations
AbstractAbstract
A novel bacterium designated RR4-40T was isolated from a biofilter of seawater recirculating aquaculture system in Busan, South Korea. Cells are strictly aerobic, Gram-negative, irregular short rod, non-motile, and oxidase- and catalase-negative. Growth was observed at 15–30°C, 0.5–6% NaCl (w/v), and pH 5.0–9.5. The strain grew optimally at 28°C, 3% salinity (w/v), and pH 8.5. The phylogenetic analysis based on 16S rRNA gene sequences showed that strain RR4-40T was most closely related to Marinirhabdus gelatinilytica NH83T (94.16% of 16S rRNA gene similarity) and formed a cluster with genera within the family Flavobacteriaceae. The values of the average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH), and average amino acid identity (AAI) between genomes of strain RR4-40T and M. gelatinilytica NH83T were 72.91, 18.2, and 76.84%, respectively, and the values against the strains in the other genera were lower than those. The major fatty acids were iso-C15:0 (31.34%), iso-C17:0 3-OH (13.65%), iso-C16:0 3-OH (10.61%), and iso-C15:1 G (10.38%). The polar lipids comprised phosphatidylglycerol, diphosphatidylglycerol, aminophospholipid, aminolipid, glycolipid, and sphingolipid. The major respiratory quinone was menaquinone-6 (MK-6) and the DNA G + C content of strain RR4-40T was 37.4 mol%. According to the polyphasic analysis, strain RR4-40T is considered to represent a novel genus within the family Flavobacteriaceae, for which the name Rasiella rasia gen. nov, sp. nov. is proposed. The type strain is RR4-40T (= KCTC 52650T = MCCC 1K04210T).

Journal of Microbiology : Journal of Microbiology
TOP