Research Support, N.I.H., Extramurals
- Free Mycolic Acid Accumulation in the Cell Wall of the mce1 Operon Mutant Strain of Mycobacterium tuberculosis
-
Sally A. Cantrell , Michael D. Leavell , Olivera Marjanovic , Anthony T. Iavarone , Julie A. Leary , Lee W. Riley
-
J. Microbiol. 2013;51(5):619-626. Published online September 14, 2013
-
DOI: https://doi.org/10.1007/s12275-013-3092-y
-
-
48
View
-
0
Download
-
43
Crossref
-
Abstract
-
The lipid-rich cell wall of Mycobacterium tuberculosis, the agent of tuberculosis, serves as an effective barrier against many chemotherapeutic agents and toxic host cell effector molecules, and it may contribute to the mechanism of persistence. Mycobacterium tuberculosis strains mutated in a 13-gene operon called mce1, which encodes a putative ABC lipid transporter, induce aberrant granulomatous response in mouse lungs. Because of the postulated role of the mce1 operon in lipid importation, we compared the cell wall lipid composition of wild type and mce1 operon mutant M. tuberculosis H37Rv strains. High resolution mass spectrometric analyses of the mce1 mutant lipid extracts showed unbound mycolic acids to accumulate in the cell wall. Quantitative analysis revealed a 10.7 fold greater amount of free mycolates in the mutant compared to that of the wild type strain. The free mycolates were comprised of alpha, methoxy and keto mycolates in the ratio 1:0.9:0.6, respectively. Since the mce1 operon is regulated in vivo, the free mycolates that accumulate during infection may serve as a barrier for M. tuberculosis against toxic products and contribute to the pathogen’s persistence.
-
Citations
Citations to this article as recorded by

- Antibiotic resistance in Mycobacterium tuberculosis alters tolerance to cell wall-targeting inhibitors
William J Jowsey, Gregory M Cook, Matthew B McNeil
JAC-Antimicrobial Resistance.2024;[Epub] CrossRef - Genomic analysis of Mycobacterium brumae sustains its nonpathogenic and immunogenic phenotype
Chantal Renau-Mínguez, Paula Herrero-Abadía, Paula Ruiz-Rodriguez, Vicente Sentandreu, Eduard Torrents, Álvaro Chiner-Oms, Manuela Torres-Puente, Iñaki Comas, Esther Julián, Mireia Coscolla
Frontiers in Microbiology.2023;[Epub] CrossRef - Mycobacterial mycolic acids trigger inhibitory receptor Clec12A to suppress host immune responses
Naoya Nishimura, Noriyuki Tomiyasu, Shota Torigoe, Satoru Mizuno, Hanako Fukano, Eri Ishikawa, Harutaka Katano, Yoshihiko Hoshino, Kazuhiro Matsuo, Masatomo Takahashi, Yoshihiro Izumi, Takeshi Bamba, Koichi Akashi, Sho Yamasaki
Tuberculosis.2023; 138: 102294. CrossRef - Mce1R of Mycobacterium tuberculosis prefers long-chain fatty acids as specific ligands: a computational study
Dipanwita Maity, Dheeraj Singh, Amitava Bandhu
Molecular Diversity.2023; 27(6): 2523. CrossRef - Structure of an endogenous mycobacterial MCE lipid transporter
James Chen, Alice Fruhauf, Catherine Fan, Jackeline Ponce, Beatrix Ueberheide, Gira Bhabha, Damian C. Ekiert
Nature.2023; 620(7973): 445. CrossRef - Protein target highlights in CASP15: Analysis of models by structure providers
Leila T. Alexander, Janani Durairaj, Andriy Kryshtafovych, Luciano A. Abriata, Yusupha Bayo, Gira Bhabha, Cécile Breyton, Simon G. Caulton, James Chen, Séraphine Degroux, Damian C. Ekiert, Benedikte S. Erlandsen, Peter L. Freddolino, Dominic Gilzer, Chris
Proteins: Structure, Function, and Bioinformatics.2023; 91(12): 1571. CrossRef - Role of Ring6 in the Function of the E. coli MCE Protein LetB
Casey Vieni, Nicolas Coudray, Georgia L. Isom, Gira Bhabha, Damian C. Ekiert
Journal of Molecular Biology.2022; 434(7): 167463. CrossRef - Mycobacterial MCE proteins as transporters that control lipid homeostasis of the cell wall
Laura I. Klepp, Julia Sabio y Garcia, FabianaBigi
Tuberculosis.2022; 132: 102162. CrossRef - Transporters Involved in the Biogenesis and Functionalization of the Mycobacterial Cell Envelope
Mary Jackson, Casey M. Stevens, Lei Zhang, Helen I. Zgurskaya, Michael Niederweis
Chemical Reviews.2021; 121(9): 5124. CrossRef - Trehalose Recycling Promotes Energy-Efficient Biosynthesis of the Mycobacterial Cell Envelope
Amol Arunrao Pohane, Caleb R. Carr, Jaishree Garhyan, Benjamin M. Swarts, M. Sloan Siegrist, Graham F. Hatfull
mBio.2021;[Epub] CrossRef - TREM2 is a receptor for non-glycosylated mycolic acids of mycobacteria that limits anti-mycobacterial macrophage activation
Ei’ichi Iizasa, Yasushi Chuma, Takayuki Uematsu, Mio Kubota, Hiroaki Kawaguchi, Masayuki Umemura, Kenji Toyonaga, Hideyasu Kiyohara, Ikuya Yano, Marco Colonna, Masahiko Sugita, Goro Matsuzaki, Sho Yamasaki, Hiroki Yoshida, Hiromitsu Hara
Nature Communications.2021;[Epub] CrossRef - Pan‐genomic analysis reveals that the evolution of Dietzia species depends on their living habitats
Hui Fang, Jin‐Bo Xu, Yong Nie, Xiao‐Lei Wu
Environmental Microbiology.2021; 23(2): 861. CrossRef - Molecular Cloning, Purification and Characterization of Mce1R of Mycobacterium tuberculosis
Dipanwita Maity, Rajasekhara Reddy Katreddy, Amitava Bandhu
Molecular Biotechnology.2021; 63(3): 200. CrossRef - Synthesis and recycling of the mycobacterial cell envelope
Katherine A Abrahams, Gurdyal S Besra
Current Opinion in Microbiology.2021; 60: 58. CrossRef - Structural insights into the substrate-binding proteins Mce1A and Mce4A from Mycobacterium tuberculosis
Pooja Asthana, Dhirendra Singh, Jan Skov Pedersen, Mikko J. Hynönen, Ramita Sulu, Abhinandan V. Murthy, Mikko Laitaoja, Janne Jänis, Lee W. Riley, Rajaram Venkatesan
IUCrJ.2021; 8(5): 757. CrossRef - Mycobacterium abscessus biofilms produce an extracellular matrix and have a distinct mycolic acid profile
Anja Dokic, Eliza Peterson, Mario L. Arrieta-Ortiz, Min Pan, Alessandro Di Maio, Nitin Baliga, Apoorva Bhatt
The Cell Surface.2021; 7: 100051. CrossRef - ATP disrupts lipid-binding equilibrium to drive retrograde transport critical for bacterial outer membrane asymmetry
Wen-Yi Low, Shuhua Thong, Shu-Sin Chng
Proceedings of the National Academy of Sciences.2021;[Epub] CrossRef - High-Throughput Screen for Cell Wall Synthesis Network Module in Mycobacterium tuberculosis Based on Integrated Bioinformatics Strategy
Xizi Luo, Jiahui Pan, Qingyu Meng, Juanjuan Huang, Wenfang Wang, Nan Zhang, Guoqing Wang
Frontiers in Bioengineering and Biotechnology.2020;[Epub] CrossRef - LetB Structure Reveals a Tunnel for Lipid Transport across the Bacterial Envelope
Georgia L. Isom, Nicolas Coudray, Mark R. MacRae, Collin T. McManus, Damian C. Ekiert, Gira Bhabha
Cell.2020; 181(3): 653. CrossRef - Differential Host Pro-Inflammatory Response to Mycobacterial Cell Wall Lipids Regulated by the Mce1 Operon
Jéssica D. Petrilli, Igor Müller, Luana E. Araújo, Thiago M. Cardoso, Lucas P. Carvalho, Bruna C. Barros, Maurício Teixeira, Sérgio Arruda, Lee W. Riley, Adriano Queiroz
Frontiers in Immunology.2020;[Epub] CrossRef - Rise of Clinical Microbial Proteogenomics: A Multiomics Approach to Nontuberculous Mycobacterium—The Case ofMycobacterium abscessusUC22
Jayshree Advani, Renu Verma, Oishi Chatterjee, Rex Devasahayam Arokia Balaya, Mohd Altaf Najar, Namitha Ravishankara, Sneha Suresh, Praveen Kumar Pachori, Umesh D. Gupta, Sneha M. Pinto, Devendra S. Chauhan, Srikanth Prasad Tripathy, Harsha Gowda, T.S. Ke
OMICS: A Journal of Integrative Biology.2019; 23(1): 1. CrossRef - Mce-associated protein Rv0177 alters the cell wall structure of Mycobacterium smegmatis and promotes macrophage apoptosis via regulating the cytokines
Shuangquan Yan, Junfeng Zhen, Yue Li, Chenhui Zhang, Andrea Stojkoska, Nzungize Lambert, Qiming Li, Ping Li, Jianping Xie
International Immunopharmacology.2019; 66: 205. CrossRef - Microenvironment ofMycobacterium smegmatisCulture to Induce Cholesterol Consumption Does Cell Wall Remodeling and Enables the Formation of Granuloma-Like Structures
Ana Cristina Doria dos Santos, Victor Hugo de Souza Marinho, Pedro Henrique de Aviz Silva, Barbarella de Matos Macchi, Mara Silvia Pinheiro Arruda, Edilene Oliveira da Silva, José Luiz Martins do Nascimento, Chubert Bernardo Castro de Sena
BioMed Research International.2019; 2019: 1. CrossRef - A highly selective fluorescent probe for real-time imaging of bacterial NAT2 and high-throughput screening of natural inhibitors for tuberculosis therapy
Yinzhu Jin, Zhenhao Tian, Xiangge Tian, Lei Feng, Jingnan Cui, Xiaochi Ma
Materials Chemistry Frontiers.2019; 3(1): 145. CrossRef - Cholesterol and fatty acids grease the wheels of Mycobacterium tuberculosis pathogenesis
Kaley M Wilburn, Rachael A Fieweger, Brian C VanderVen
Pathogens and Disease.2018;[Epub] CrossRef - Mce2R/Rv0586 of Mycobacterium tuberculosis is the functional homologue of FadR E. coli
Suhail Yousuf, Rajendra Kumar Angara, Ajit Roy, Shailesh Kumar Gupta, Rohan Misra, Akash Ranjan
Microbiology.2018; 164(9): 1133. CrossRef - Cell envelope stress in mycobacteria is regulated by the novel signal transduction ATPase IniR in response to trehalose
Maikel Boot, Vincent J. C. van Winden, Marion Sparrius, Robert van de Weerd, Alexander Speer, Roy Ummels, Tige Rustad, David R. Sherman, Wilbert Bitter, Carmen Buchrieser
PLOS Genetics.2017; 13(12): e1007131. CrossRef - “Genetic regulation of Mycobacterium tuberculosis in a lipid-rich environment”
Diana A. Aguilar-Ayala, Juan Carlos Palomino, Peter Vandamme, Anandi Martin, Jorge A. Gonzalez-y-Merchand
Infection, Genetics and Evolution.2017; 55: 392. CrossRef - MCE domain proteins: conserved inner membrane lipid-binding proteins required for outer membrane homeostasis
Georgia L. Isom, Nathaniel J. Davies, Zhi-Soon Chong, Jack A. Bryant, Mohammed Jamshad, Maria Sharif, Adam F. Cunningham, Timothy J. Knowles, Shu-Sin Chng, Jeffrey A. Cole, Ian R. Henderson
Scientific Reports.2017;[Epub] CrossRef - Bacterial immunostat: Mycobacterium tuberculosis lipids and their role in the host immune response
Adriano Queiroz, Lee W. Riley
Revista da Sociedade Brasileira de Medicina Tropical.2017; 50(1): 9. CrossRef -
The Sec Pathways and Exportomes of
Mycobacterium tuberculosis
Brittany K. Miller, Katelyn E. Zulauf, Miriam Braunstein, William R. Jacobs Jr., Helen McShane, Valerie Mizrahi, Ian M. Orme
Microbiology Spectrum.2017;[Epub] CrossRef - Rv3723/LucA coordinates fatty acid and cholesterol uptake in Mycobacterium tuberculosis
Evgeniya V Nazarova, Christine R Montague, Thuy La, Kaley M Wilburn, Neelima Sukumar, Wonsik Lee, Shannon Caldwell, David G Russell, Brian C VanderVen
eLife.2017;[Epub] CrossRef - The transcriptome of Mycobacterium tuberculosis in a lipid-rich dormancy model through RNAseq analysis
Diana A. Aguilar-Ayala, Laurentijn Tilleman, Filip Van Nieuwerburgh, Dieter Deforce, Juan Carlos Palomino, Peter Vandamme, Jorge A. Gonzalez-Y-Merchand, Anandi Martin
Scientific Reports.2017;[Epub] CrossRef - Transcriptional Profiling of Mycobacterium tuberculosis Exposed toIn VitroLysosomal Stress
Wenwei Lin, Paola Florez de Sessions, Garrett Hor Keong Teoh, Ahmad Naim Nazri Mohamed, Yuan O. Zhu, Vanessa Hui Qi Koh, Michelle Lay Teng Ang, Peter C. Dedon, Martin Lloyd Hibberd, Sylvie Alonso, S. Ehrt
Infection and Immunity.2016; 84(9): 2505. CrossRef - Metabolic profile of Mycobacterium smegmatis reveals Mce4 proteins are relevant for cell wall lipid homeostasis
María Paz Santangelo, Adam Heuberger, Federico Blanco, Marina Forrellad, Catalina Taibo, Laura Klepp, Julia Sabio García, Pablo I. Nikel, Mary Jackson, Fabiana Bigi
Metabolomics.2016;[Epub] CrossRef - An orphaned Mce‐associated membrane protein of Mycobacterium tuberculosis is a virulence factor that stabilizes Mce transporters
Ellen Foot Perkowski, Brittany K. Miller, Jessica R. McCann, Jonathan Tabb Sullivan, Seidu Malik, Irving Coy Allen, Virginia Godfrey, Jennifer D. Hayden, Miriam Braunstein
Molecular Microbiology.2016; 100(1): 90. CrossRef - Standardization of natural mycolic acid antigen composition and production for use in biomarker antibody detection to diagnose active tuberculosis
F.L. Ndlandla, V. Ejoh, A.C. Stoltz, B. Naicker, A.D. Cromarty, S. van Wyngaardt, M. Khati, L.S. Rotherham, Y. Lemmer, J. Niebuhr, C.R. Baumeister, J.R. Al Dulayymi, H. Swai, M.S. Baird, J.A. Verschoor
Journal of Immunological Methods.2016; 435: 50. CrossRef - Screening of the antimycobacterial activity of novel lipophilic agents by the modified broth based method
Mehdi Zandhaghighi, Kiarash Ghazvini, Zahra Meshkat, Seyed Abdolrahim Rezaee, Mohammad Derakhshan, Saman Soleimanpour, Farzin Hadizadeh
Journal of Clinical Tuberculosis and Other Mycobacterial Diseases.2016; 3: 1. CrossRef - Comparative metabolic profiling ofmce1operon mutant vs wild-typeMycobacterium tuberculosisstrains
Adriano Queiroz, Daniel Medina-Cleghorn, Olivera Marjanovic, Daniel K. Nomura, Lee W. Riley, Patricia Bozza
Pathogens and Disease.2015; 73(8): ftv066. CrossRef - Mycobacterium tuberculosis effectors involved in host–pathogen interaction revealed by a multiple scales integrative pipeline
Wu Li, Xiangyu Fan, Quanxin Long, Longxiang Xie, Jianping Xie
Infection, Genetics and Evolution.2015; 32: 1. CrossRef - Label-free Quantitative Proteomics Reveals a Role for the Mycobacterium tuberculosis SecA2 Pathway in Exporting Solute Binding Proteins and Mce Transporters to the Cell Wall*
Meghan E. Feltcher, Harsha P. Gunawardena, Katelyn E. Zulauf, Seidu Malik, Jennifer E. Griffin, Christopher M. Sassetti, Xian Chen, Miriam Braunstein
Molecular & Cellular Proteomics.2015; 14(6): 1501. CrossRef - Role of host- and pathogen-associated lipids in directing the immune response in mycobacterial infections, with emphasis onMycobacterium aviumsubsp.paratuberculosis
Shyamala Thirunavukkarasu, Kumudika de Silva, Karren M. Plain, Richard J. Whittington
Critical Reviews in Microbiology.2014; : 1. CrossRef - Inhibition of toll-like receptor 2 (TLR-2)-mediated response in human alveolar epithelial cells by mycolic acids andMycobacterium tuberculosismce1operon mutant
Patricia C. Sequeira, Ryan H. Senaratne, Lee W. Riley
Pathogens and Disease.2014; 70(2): 132. CrossRef
- Sulfolipid Accumulation in Mycobacterium tuberculosis Disrupted in the mce2 Operon
-
Olivera Marjanovic , Anthony T. Iavarone , Lee W. Riley
-
J. Microbiol. 2011;49(3):441-447. Published online June 30, 2011
-
DOI: https://doi.org/10.1007/s12275-011-0435-4
-
-
29
View
-
0
Download
-
23
Scopus
-
Abstract
-
Mycobacterium tuberculosis, the causative agent of tuberculosis, has a lipid-rich cell wall that serves as an effective barrier against drugs and toxic host cell products, which may contribute to the organism’s persistence in a host. M. tuberculosis contains four homologous operons called mce (mce1-4) that encode putative ABC transporters involved in lipid importation across the cell wall. Here, we analyzed the lipid composition of M. tuberculosis disrupted in the mce2 operon. High resolution mass spectrometric and thin layer chromatographic analyses of the mutant’s cell wall lipid extracts showed accumulation of SL-1 and SL1278 molecules. Radiographic quantitative analysis and densitometry revealed 2.9, 3.9 and 9.8-fold greater amount of [35S] SL-1 in the mce2 operon mutant compared to the wild type M. tuberculosis during the early/mid logarithmic, late logarithmic and stationary phase of growth in liquid broth, respectively. The amount of [35S] SL1278 in the mutant also increased progressively over the same growth phases. The expression of the mce2 operon genes in the wild type strain progressively increased from the logarithmic to the stationary phase of bacterial growth in vitro, which inversely correlated with the proportion of radiolabel incorporation into SL-1 and SL1278 at these phases. Since the mce2 operon is regulated in wild type M. tuberculosis, its cell wall may undergo changes in SL-1 and SL1278 contents during a natural course of infection and this may serve as an important adaptive strategy for M. tuberculosis to maintain persistence in a host.