Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "thyroid microbiota"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Effects of rehydration on physiological and transcriptional responses of a water-stressed rhizobium
Jie Zhu , Xin Jiang , Dawei Guan , Yaowei Kang , Li Li , Fengming Cao , Baisuo Zhao , Mingchao Ma , Ji Zhao , Jun Li
J. Microbiol. 2022;60(1):31-46.   Published online November 26, 2021
DOI: https://doi.org/10.1007/s12275-022-1325-7
  • 57 View
  • 0 Download
  • 5 Web of Science
  • 5 Crossref
AbstractAbstract
As a microsymbiont of soybean, Bradyrhizobium japonicum plays an important role in symbiotic nitrogen fixation and sustainable agriculture. However, the survival of B. japonicum cells under water-deplete (e.g., drought) and water-replete (e.g., flood) conditions is a major concern affecting their nitrogen-fixing ability by establishing the symbiotic relationship with the host. In this study, we isolated a water stress tolerant rhizobium from soybean root nodules and tested its survival under water-deplete conditions. The rhizobium was identified as Bradyrhizobium japonicum and named strain 5038. Interestingly, both plate counting and live/dead fluorescence staining assays indicate that a number of viable but non-culturable cells exist in the culture medium upon the rehydration process which could cause dilution stress. Bradyrhizobium japonicum 5038 cells increased production of exopolysaccharide (EPS) and trehalose when dehydrated, suggesting that protective responses were stimulated. As expected, cells reduced their production upon the subsequent rehydration. To examine differential gene expression of B. japonicum 5038 when exposed to water-deplete and subsequent waterreplete conditions, whole-genome transcriptional analysis was performed under 10% relative humidity (RH), and subsequent 100% RH, respectively. A total of 462 differentially expressed genes (DEGs, > 2.0-fold) were identified under the 10% RH condition, while 3,776 genes showed differential expression during the subsequent rehydration (100% RH) process. Genes involved in signal transduction, inorganic ion transport, energy production and metabolisms of carbohydrates, amino acids, and lipids were far more up-regulated than downregulated in the 10% RH condition. Notably, trehalose biosynthetic genes (otsAB, treS, and treYZ), genes ligD, oprB, and a sigma factor rpoH were significantly induced by 10% RH. Under the subsequent 100% RH condition, genes involved in transcription, translation, cell membrane regulation, replication and repair, and protein processing were highly up-regulated. Interestingly, most of 10%-RH inducible genes displayed rehydration-repressed, except three genes encoding heat shock (Hsp20) proteins. Therefore, this study provides molecular evidence for the switch of gene expression of B. japonicum cells when encountered the opposite water availability from water-deplete to water-replete conditions.

Citations

Citations to this article as recorded by  
  • Challenges to rhizobial adaptability in a changing climate: Genetic engineering solutions for stress tolerance
    Yunjia Zhang, Yee-Shan Ku, Tsz-Yan Cheung, Sau-Shan Cheng, Dawei Xin, Kewin Gombeau, Yizhi Cai, Hon-Ming Lam, Ting-Fung Chan
    Microbiological Research.2024; 288: 127886.     CrossRef
  • Plant–Soil Microbial Interaction: Differential Adaptations of Beneficial vs. Pathogenic Bacterial and Fungal Communities to Climate-Induced Drought
    Nataliya Loiko, M. Nazrul Islam
    Agronomy.2024; 14(9): 1949.     CrossRef
  • Bacteria undergo significant shifts while archaea maintain stability in Pocillopora damicornis under sustained heat stress
    Huimin Ju, Jian Zhang, Yiyang Zou, Feiyang Xie, Xiaoyu Tang, Si Zhang, Jie Li
    Environmental Research.2024; 250: 118469.     CrossRef
  • Effect of Nitrogen Application and Cutting Frequency on the Yield and Forage Quality of Alfalfa in Seasonal Cultivation
    Kun Zhang, Chenyuan Zhai, Yonglong Li, Yan Li, Hui Qu, Yixin Shen
    Agriculture.2023; 13(5): 1063.     CrossRef
  • Profound Change in Soil Microbial Assembly Process and Co-occurrence Pattern in Co-inoculation of Bradyrhizobium japonicum 5038 and Bacillus aryabhattai MB35-5 on Soybean
    Yubin Zhao, Dawei Guan, Xu Liu, Gui-Feng Gao, Fangang Meng, Bingqiang Liu, Pengfei Xing, Xin Jiang, Mingchao Ma, Fengming Cao, Li Li, Jun Li
    Frontiers in Microbiology.2022;[Epub]     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP