Search
- Page Path
-
HOME
> Search
Review
- Reverse Zoonotic Transmission of SARS-CoV-2 and Monkeypox Virus: A Comprehensive Review.
-
Chiranjib Chakraborty, Manojit Bhattacharya, Md Aminul Islam, Hatem Zayed, Elijah Ige Ohimain, Sang-Soo Lee, Prosun Bhattacharya, Kuldeep Dhama
-
J. Microbiol. 2024;62(5):337-354. Published online May 23, 2024
-
DOI: https://doi.org/10.1007/s12275-024-00138-9
-
-
Abstract
- Reverse zoonosis reveals the process of transmission of a pathogen through the human-animal interface and the spillback of the zoonotic pathogen. In this article, we methodically demonstrate various aspects of reverse zoonosis, with a comprehensive discussion of SARS-CoV-2 and MPXV reverse zoonosis. First, different components of reverse zoonosis, such as humans, different pathogens, and numerous animals (poultry, livestock, pets, wild animals, and zoo animals), have been demonstrated. Second, it explains the present status of reverse zoonosis with different pathogens during previous occurrences of various outbreaks, epidemics, and pandemics. Here, we present 25 examples from literature. Third, using several examples, we comprehensively illustrate the present status of the reverse zoonosis of SARS-CoV-2 and MPXV. Here, we have provided 17 examples of SARS-CoV-2 reverse zoonosis and two examples of MPXV reverse zoonosis. Fourth, we have described two significant aspects of reverse zoonosis: understanding the fundamental aspects of spillback and awareness. These two aspects are required to prevent reverse zoonosis from the current infection with two significant viruses. Finally, the One Health approach was discussed vividly, where we urge scientists from different areas to work collaboratively to solve the issue of reverse zoonosis.
Journal Articles
- Vaccine Development for Severe Fever with Thrombocytopenia Syndrome Virus in Dogs.
-
Seok-Chan Park, Da-Eun Jeong, Sun-Woo Han, Joon-Seok Chae, Joo-Yong Lee, Hyun-Sook Kim, Bumseok Kim, Jun-Gu Kang
-
J. Microbiol. 2024;62(4):327-335. Published online April 18, 2024
-
DOI: https://doi.org/10.1007/s12275-024-00119-y
-
-
Abstract
- Severe fever with thrombocytopenia syndrome (SFTS) is a life-threatening viral zoonosis. The causative agent of this disease is the Dabie bandavirus, which is usually known as the SFTS virus (SFTSV). Although the role of vertebrates in SFTSV transmission to humans remains uncertain, some reports have suggested that dogs could potentially transmit SFTSV to humans. Consequently, preventive measures against SFTSV in dogs are urgently needed. In the present study, dogs were immunized three times at two-week intervals with formaldehyde-inactivated SFTSV with two types of adjuvants. SFTSV (KCD46) was injected into all dogs two weeks after the final immunization. Control dogs showed viremia from 2 to 4 days post infection (dpi), and displayed white pulp atrophy in the spleen, along with a high level of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assay (TUNEL) positive area. However, the inactivated SFTSV vaccine groups exhibited rare pathological changes and significantly reduced TUNEL positive areas in the spleen. Furthermore, SFTSV viral loads were not detected at any of the tested dpi. Our results indicate that both adjuvants can be safely used in combination with an inactivated SFTSV formulation to induce strong neutralizing antibodies. Inactivated SFTSV vaccines effectively prevent pathogenicity and viremia in dogs infected with SFTSV. In conclusion, our study highlighted the potential of inactivated SFTSV vaccination for SFTSV control in dogs.
- Microbial co-occurrence network in the rhizosphere microbiome: its association with physicochemical properties and soybean yield at a regional scale
-
Sarbjeet Niraula , Meaghan Rose , Woo-Suk Chang
-
J. Microbiol. 2022;60(10):986-997. Published online September 27, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2363-x
-
-
19
View
-
0
Download
-
5
Citations
-
Abstract
- Microbial communities in the rhizosphere play a crucial role
in determining plant growth and crop yield. A few studies
have been performed to evaluate the diversity and co-occurrence
patterns of rhizosphere microbiomes in soybean (Glycine
max) at a regional scale. Here, we used a culture-independent
method
to compare the bacterial communities of the
soybean rhizosphere between Nebraska (NE), a high-yield
state, and Oklahoma (OK), a low-yield state. It is well known
that the rhizosphere microbiome is a subset of microbes that
ultimately get colonized by microbial communities from the
surrounding bulk soil. Therefore, we hypothesized that differences
in the soybean yield are attributed to the variations in
the rhizosphere microbes at taxonomic, functional, and community
levels. In addition, soil physicochemical properties
were also evaluated from each sampling site for comparative
study. Our result showed that distinct clusters were formed
between NE and OK in terms of their soil physicochemical
property. Among 3 primary nutrients (i.e., nitrogen, phosphorus,
and potassium), potassium is more positively correlated
with the high-yield state NE samples. We also attempted
to identify keystone communities that significantly affected the
soybean yield using co-occurrence network patterns. Network
analysis revealed that communities formed distinct clusters
in which members of modules having significantly positive
correlations with the soybean yield were more abundant in
NE than OK. In addition, we identified the most influential
bacteria for the soybean yield in the identified modules. For
instance, included are class Anaerolineae, family Micromonosporaceae,
genus Plantomyces, and genus Nitrospira in the
most complex module (ME9) and genus Rhizobium in ME23.
This research would help to further identify a way to increase
soybean yield in low-yield states in the U.S. as well as worldwide
by reconstructing the microbial communities in the
rhizosphere.
TOP