Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "truncated xylanases"
Filter
Filter
Article category
Keywords
Publication year
Research Support, Non-U.S. Gov't
The Role of Carbohydrate-Binding Module (CBM) Repeat of a Multimodular Xylanase (XynX) from Clostridium thermocellum in Cellulose and Xylan Binding
Thangaswamy Selvaraj , Sung Kyum Kim , Yong Ho Kim , Yu Seok Jeong , Yu-Jeong Kim , Nguyen Dinh Phuong , Kyung Hwa Jung , Jungho Kim , Han Dae Yun , Hoon Kim
J. Microbiol. 2010;48(6):856-861.   Published online January 9, 2011
DOI: https://doi.org/10.1007/s12275-010-0285-5
  • 6 View
  • 0 Download
  • 12 Citations
AbstractAbstract
A non-cellulosomal xylanase from Clostridium thermocellum, XynX, consists of a family-22 carbohydratebinding module (CBM22), a family-10 glycoside hydrolase (GH10) catalytic module, two family-9 carbohydrate-binding modules (CBM9-I and CBM9-II), and an S-layer homology (SLH) module. E. coli BL21(DE3) (pKM29), a transformant carrying xynX', produced several truncated forms of the enzyme. Among them, three major active species were purified by SDS-PAGE, activity staining, gel-slicing, and diffusion from the gel. The truncated xylanases were different from each other only in their C-terminal regions. In addition to the CBM22 and GH10 catalytic modules, XynX1 had the CBM9-I and most of the CBM9-II, XynX2 had the CBM9-I and about 40% of the CBM9-II, and XynX3 had about 75% of the CBM9-I. The truncated xylanases showed higher binding capacities toward Avicel than those toward insoluble xylan. XynX1 showed a higher affinity toward Avicel (70.5%) than XynX2 (46.0%) and XynX3 (42.1%); however, there were no significant differences in the affinities toward insoluble xylan. It is suggested that the CBM9 repeat, especially CBM9-II, of XynX plays a role in xylan degradation in nature by strengthening cellulose binding rather than by enhancing xylan binding.

Journal of Microbiology : Journal of Microbiology
TOP