Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "tularaemia"
Filter
Filter
Article category
Keywords
Publication year
Research Support, Non-U.S. Gov't
Tularemia Progression Accompanied with Oxidative Stress and Antioxidant Alteration in Spleen and Liver of BALB/c Mice
Miroslav Pohanka , Oto Pavlis , Branislav Ruttkay-Nedecky , Jiri Sochor , Jakub Sobotka , Jiri Pikula , Vojtech Adam , Rene Kizek
J. Microbiol. 2012;50(3):401-408.   Published online June 30, 2012
DOI: https://doi.org/10.1007/s12275-012-1621-8
  • 14 View
  • 0 Download
  • 10 Citations
AbstractAbstract
Francisella tularensis is the causative agent of tularemia. It is an intracellular pathogen with the ability to survive within phagosomes and induce pyroptotic cell death. In this study, we attempted to prove whether oxidative imbalance plays a significant role in tularemia pathogenesis. In our experimental model, we subcutaneously infected female BALB/c mice (dose 105 CFU of F. tularensis LVS). Liver, spleen, and blood were collected from mice at regular intervals from days 1–15 after infection. The bacterial burden was assessed by a cultivation test. The burden was unchanging from the 2nd to 6th day after infection. The bacterial burden corresponded to the plasmatic level of IFN-γ, IL-6, and liver malondialdehyde. After the phase of acute bacteraemia and the innate immunity reaction, the levels of reduced glutathione and total low molecular weight antioxidants decreased significantly and the activity of caspase-3 increased in the liver. The level of reduced glutathione decreased to 25% of the original level, and the total level of low molecular weight antioxidants was less than 50% of the initial amount. The demonstrated effects of tularemia-induced pathology had a more extensive impact on the liver than on the spleen.

Journal of Microbiology : Journal of Microbiology
TOP