Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "virus-cell fusion"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Role of a Third Extracellular Domain of an Ecotropic Receptor in Moloney Murine Leukemia Virus Infection
Eun Hye Bae , Sung-Han Park , Yong-Tae Jung
J. Microbiol. 2006;44(4):447-452.
DOI: https://doi.org/2407 [pii]
  • 13 View
  • 0 Download
AbstractAbstract
The murine ecotropic retroviral receptor has been demonstrated to function as a mouse cationic amino acid transporter 1 (mCAT1), and is comprised of multiple membranespanning domains. Feral mouse (Mus dunni) cells are not susceptible to infection by the ecotropic Moloney murine leukemia virus (MoMLV), although they can be infected by other ecotropic murine leukemia viruses, including Friend MLV and Rauscher MLV. The relative inability of MoMLV to replicate in M. dunni cells has been attributed to two amino acids (V214 and G236) located within the third extracellular loop of the M. dunni CAT1 receptor (dCAT1). Via the exchange of the third extracellular loop of the mCAT1 cDNA encoding receptor from the permissive mouse and the corresponding portion of cDNA encoding for the nonpermissive M. dunni receptor, we have identified the most critical amino acid residue, which is a glycine located at position 236 within the third extracellular loop of dCAT1. We also attempted to determine the role of the third extracellular loop of the M. dunni CAT1 receptor with regard to the formation of the syncytium. The relationship between dCAT1 and virus-induced syncytia was suggested initially by our previous identification of two MLV isolates (S82F in Moloney and S84A in Friend MLV), both of which are uniquely cytopathic in M. dunni cells. In an attempt to determine the relationship existing between dCAT1 and the virally-induced syncytia, we infected 293-dCAT1 or chimeric dCAT1 cells with the S82F pseudotype virus. The S82F pseudotype virus did not induce the formation of syncytia, but did show increased susceptibility to 293 cells expressing dCAT1. The results of our study indicate that S82F-induced syncytium formation may be the result of cell-cell fusion, but not virus-cell fusion.

Journal of Microbiology : Journal of Microbiology
TOP