Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
15 "water"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Articles
Congregibacter variabilis sp. nov. and Congregibacter brevis sp. nov. Within the OM60/NOR5 Clade, Isolated from Seawater, and Emended Description of the Genus Congregibacter.
Hyeonsu Tak, Miri S Park, Hyerim Cho, Yeonjung Lim, Jang-Cheon Cho
J. Microbiol. 2024;62(9):739-748.   Published online July 18, 2024
DOI: https://doi.org/10.1007/s12275-024-00158-5
  • 45 View
  • 0 Download
AbstractAbstract
Two Gram-stain-negative, aerobic, motile by means of flagella, short rod-shaped bacterial strains, designated IMCC43200(T) and IMCC45268(T), were isolated from coastal seawater samples collected from the South Sea of Korea. Strains IMCC43200(T) and IMCC45268(T) shared 98.6% 16S rRNA gene sequence similarity and were closely related to Congregibacter litoralis KT71(T) (98.8% and 98.7%, respectively). Complete whole-genome sequences of IMCC43200(T) and IMCC45268(T) were 3.93 and 3.86 Mb in size with DNA G + C contents of 54.8% and 54.2%, respectively. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the two strains were 74.5% and 23.4%, respectively, revealing that they are independent species. The two strains showed ANI values of ≤ 75.8% and dDDH values of ≤ 23.0% to the type and only species of the genus Congregibacter (C. litoralis), indicating that each strain represents a novel species. Both strains contained summed feature 3 (comprising C(16:1) ω6c and/or C(16:1) ω7c) and summed feature 8 (comprising C(18:1) ω6c and/or C(18:1) ω7c) as major fatty acid constituents. The predominant isoprenoid quinone detected in both strains was ubiquinone-8 (Q-8). The major polar lipids of the two strains were phosphatidylethanolamine, phosphatidylglycerol, phospholipids, and aminolipids. Based on the phylogenetic, genomic, and phenotypic characterization, strains IMCC43200(T) and IMCC45268(T) were considered to represent two novel species within the genus Congregibacter, for which the names Congregibacter variabilis sp. nov. and Congregibacter brevis sp. nov. are proposed with IMCC43200(T) (= KCTC 8133(T) = NBRC 116295(T) = CCTCC AB 2023139(T)) and IMCC45268(T) (= KCTC 92921(T) = NBRC 116135(T)) as the type strains, respectively.
Autotrophy to Heterotrophy: Shift in Bacterial Functions During the Melt Season in Antarctic Cryoconite Holes.
Aritri Sanyal, Runa Antony, Gautami Samui, Meloth Thamban
J. Microbiol. 2024;62(8):591-609.   Published online May 30, 2024
DOI: https://doi.org/10.1007/s12275-024-00140-1
  • 24 View
  • 0 Download
  • 2 Citations
AbstractAbstract
Microbes residing in cryoconite holes (debris, water, and nutrient-rich ecosystems) on the glacier surface actively participate in carbon and nutrient cycling. Not much is known about how these communities and their functions change during the summer melt-season when intense ablation and runoff alter the influx and outflux of nutrients and microbes. Here, we use high-throughput-amplicon sequencing, predictive metabolic tools and Phenotype MicroArray techniques to track changes in bacterial communities and functions in cryoconite holes in a coastal Antarctic site and the surrounding fjord, during the summer season. The bacterial diversity in cryoconite hole meltwater was predominantly composed of heterotrophs (Proteobacteria) throughout the season. The associated functional potentials were related to heterotrophic-assimilatory and -dissimilatory pathways. Autotrophic Cyanobacterial lineages dominated the debris community at the beginning and end of summer, while heterotrophic Bacteroidota- and Proteobacteria-related phyla increased during the peak melt period. Predictive functional analyses based on taxonomy show a shift from predominantly phototrophy-related functions to heterotrophic assimilatory pathways as the melt-season progressed. This shift from autotrophic to heterotrophic communities within cryoconite holes can affect carbon drawdown and nutrient liberation from the glacier surface during the summer. In addition, the flushing out and export of cryoconite hole communities to the fjord could influence the biogeochemical dynamics of the fjord ecosystem.
Review
Biological and Chemical Approaches for Controlling Harmful Microcystis Blooms
Wonjae Kim, Yerim Park, Jaejoon Jung, Che Ok Jeon, Masanori Toyofuku, Jiyoung Lee, Woojun Park
J. Microbiol. 2024;62(3):249-260.   Published online April 8, 2024
DOI: https://doi.org/10.1007/s12275-024-00115-2
  • 31 View
  • 1 Download
  • 4 Citations
AbstractAbstract
The proliferation of harmful cyanobacterial blooms dominated by Microcystis aeruginosa has become an increasingly serious problem in freshwater ecosystems due to climate change and eutrophication. Microcystis-blooms in freshwater generate compounds with unpleasant odors, reduce the levels of dissolved O2, and excrete microcystins into aquatic ecosystems, potentially harming various organisms, including humans. Various chemical and biological approaches have thus been developed to mitigate the impact of the blooms, though issues such as secondary pollution and high economic costs have not been adequately addressed. Red clays and H2O2 are conventional treatment methods that have been employed worldwide for the mitigation of the blooms, while novel approaches, such as the use of plant or microbial metabolites and antagonistic bacteria, have also recently been proposed. Many of these methods rely on the generation of reactive oxygen species, the inhibition of photosynthesis, and/or the disruption of cellular membranes as their mechanisms of action, which may also negatively impact other freshwater microbiota. Nevertheless, the underlying molecular mechanisms of anticyanobacterial chemicals and antagonistic bacteria remain unclear. This review thus discusses both conventional and innovative approaches for the management of M. aeruginosa in freshwater bodies.
Journal Articles
Antiviral Activity Against SARS‑CoV‑2 Variants Using in Silico and in Vitro Approaches
Hee-Jung Lee , Hanul Choi , Aleksandra Nowakowska , Lin-Woo Kang , Minjee Kim , Young Bong Kim
J. Microbiol. 2023;61(7):703-711.   Published online June 26, 2023
DOI: https://doi.org/10.1007/s12275-023-00062-4
  • 21 View
  • 0 Download
  • 1 Citations
AbstractAbstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emergence in 2019 led to global health crises and the persistent risk of viral mutations. To combat SARS-CoV-2 variants, researchers have explored new approaches to identifying potential targets for coronaviruses. This study aimed to identify SARS-CoV-2 inhibitors using drug repurposing. In silico studies and network pharmacology were conducted to validate targets and coronavirus-associated diseases to select potential candidates, and in vitro assays were performed to evaluate the antiviral effects of the candidate drugs to elucidate the mechanisms of the viruses at the molecular level and determine the effective antiviral drugs for them. Plaque and cytopathic effect reduction were evaluated, and real-time quantitative reverse transcription was used to evaluate the antiviral activity of the candidate drugs against SARS-CoV-2 variants in vitro. Finally, a comparison was made between the molecular docking binding affinities of fenofibrate and remdesivir (positive control) to conventional and identified targets validated from protein–protein interaction (PPI). Seven candidate drugs were obtained based on the biological targets of the coronavirus, and potential targets were identified by constructing complex disease targets and PPI networks. Among the candidates, fenofibrate exhibited the strongest inhibition effect 1 h after Vero E6 cell infection with SARS-CoV-2 variants. This study identified potential targets for coronavirus disease (COVID-19) and SARS-CoV-2 and suggested fenofibrate as a potential therapy for COVID-19.
Ship Hull‑Fouling Diatoms on Korean Research Vessels Revealed by Morphological and Molecular Methods, and Their Environmental Implications
Jaeyeong Park , Taehee Kim , Buhari Lawan Muhammad , Jang-Seu Ki
J. Microbiol. 2023;61(6):615-626.   Published online May 25, 2023
DOI: https://doi.org/10.1007/s12275-023-00055-3
  • 17 View
  • 0 Download
AbstractAbstract
Ship biofouling is one of the main vectors for the introduction and global spread of non-indigenous organisms. Diatoms were the early colonizers of ship hulls; however, their community composition on ships is poorly understood. Herein, we investigated the diatom community on the hull samples collected from two Korean research vessels Isabu (IRV) and Onnuri (ORV) on September 2 and November 10, 2021, respectively. IRV showed low cell density (345 cells/cm2) compared to ORV (778 cells/cm2). We morphologically identified more than 15 species of diatoms from the two research vessels (RVs). The microalgae in both RVs were identified as Amphora, Cymbella, Caloneis, Halamphora, Navicula, Nitzschia, and Plagiogramma. Of them, the genus Halamphora was found to be predominant. However, both RVs had a varied dominant species with a significant difference in body size; Halamphora oceanica dominated at IRV, and Halamphora sp. at ORV, respectively. Molecular cloning showed similar results to morphological analysis, in which Halamphora species dominated in both RVs. The hull-attached species were distinct from species found in the water column. These results revealed diatoms communities that are associated with ship hull-fouling at an early stage of biofilm formation. Moreover, ships arriving from different regions could show some variation in species composition on their hull surfaces, with the potential for nonindigenous species introduction.
Comparison of Ganoderma boninense Isolate’s Aggressiveness Using Infected Oil Palm Seedlings
Mei Lieng Lo , Tu Anh Vu Thanh , Frazer Midot , Sharon Yu Ling Lau , Wei Chee Wong , Hun Jiat Tung , Mui Sie Jee , Mei-Yee Chin , Lulie Melling
J. Microbiol. 2023;61(4):449-459.   Published online April 25, 2023
DOI: https://doi.org/10.1007/s12275-023-00040-w
  • 18 View
  • 0 Download
  • 4 Citations
AbstractAbstract
Basal stem rot incidence caused by a white-rot fungus, Ganoderma boninense, is the major disease of oil palm in Southeast Asia. The rate of disease transmission and host damage are affected by variations in pathogen aggressiveness. Several other studies have used the disease severity index (DSI) to determine G. boninense aggressiveness levels while verifying disease using a culture-based method, which might not provide accurate results or be feasible in all cases. To differentiate G. boninense aggressiveness, we employed the DSI and vegetative growth measurement of infected oil palm seedlings. Disease confirmation was performed through scanning electron microscopy and molecular identification of fungal DNA from both infected tissue and fungi isolated from Ganoderma selective medium. Two-month-old oil palm seedlings were artificially inoculated with G. boninense isolates (2, 4A, 5A, 5B, and 7A) sampled from Miri (Lambir) and Mukah (Sungai Meris and Sungai Liuk), Sarawak. The isolates were categorized into three groups: highly aggressive (4A and 5B), moderately aggressive (5A and 7A), and less aggressive (2). Isolate 5B was identified as the most aggressive, and it was the only one to result in seedling mortality. Out of the five vegetative growth parameters measured, only the bole size between treatments was not affected. The integration of both conventional and molecular approaches in disease confirmation allows for precise detection.
Gut Lactobacillus and Probiotics Lactobacillus lactis/rhamnosis Ameliorate Liver Fibrosis in Prevention and Treatment
Sung Min Won , Na Young Lee , Ki&# , Haripriya Gupta , Satya Priya Sharma , Kyung Hwan Kim , Byoung Kook Kim , Hyun Chae Joung , Jin Ju Jeong , Raja Ganesan , Sang Hak Han , Sang Jun Yoon , Dong Joon Kim , Ki Tae Suk
J. Microbiol. 2023;61(2):245-257.   Published online February 6, 2023
DOI: https://doi.org/10.1007/s12275-023-00014-y
  • 15 View
  • 0 Download
  • 5 Citations
AbstractAbstract
The progression and exacerbation of liver fibrosis are closely related to the gut microbiome. It is hypothesized that some probiotics may slow the progression of liver fibrosis. In human stool analysis [healthy group (n = 44) and cirrhosis group (n = 18)], difference in Lactobacillus genus between healthy group and cirrhosis group was observed. Based on human data, preventive and therapeutic effect of probiotics Lactobacillus lactis and L. rhamnosus was evaluated by using four mice fibrosis models. L. lactis and L. rhamnosus were supplied to 3,5-diethoxycarbonyl-1,4-dihydrocollidine or carbon tetrachloride-induced liver fibrosis C57BL/6 mouse model. Serum biochemical measurements, tissue staining, and mRNA expression in the liver were evaluated. The microbiome was analyzed in mouse cecal contents. In the mouse model, the effects of Lactobacillus in preventing and treating liver fibrosis were different for each microbe species. In case of L. lactis, all models showed preventive and therapeutic effects against liver fibrosis. In microbiome analysis in mouse models administered Lactobacillus, migration and changes in the ratio and composition of the gut microbial community were confirmed. L. lactis and L. rhamnosus showed preventive and therapeutic effects on the progression of liver fibrosis, suggesting that Lactobacillus intake may be a useful strategy for prevention and treatment.
Rasiella rasia gen. nov. sp. nov. within the family Flavobacteriaceae isolated from seawater recirculating aquaculture system
Seong-Jin Kim , Young-Sam Kim , Sang-Eon Kim , Hyun-Kyoung Jung , Jeeeun Park , Min-Ju Yu , Kyoung-Ho Kim
J. Microbiol. 2022;60(11):1070-1076.   Published online October 17, 2022
DOI: https://doi.org/10.1007/s12275-022-2099-7
  • 17 View
  • 0 Download
  • 1 Citations
AbstractAbstract
A novel bacterium designated RR4-40T was isolated from a biofilter of seawater recirculating aquaculture system in Busan, South Korea. Cells are strictly aerobic, Gram-negative, irregular short rod, non-motile, and oxidase- and catalase-negative. Growth was observed at 15–30°C, 0.5–6% NaCl (w/v), and pH 5.0–9.5. The strain grew optimally at 28°C, 3% salinity (w/v), and pH 8.5. The phylogenetic analysis based on 16S rRNA gene sequences showed that strain RR4-40T was most closely related to Marinirhabdus gelatinilytica NH83T (94.16% of 16S rRNA gene similarity) and formed a cluster with genera within the family Flavobacteriaceae. The values of the average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH), and average amino acid identity (AAI) between genomes of strain RR4-40T and M. gelatinilytica NH83T were 72.91, 18.2, and 76.84%, respectively, and the values against the strains in the other genera were lower than those. The major fatty acids were iso-C15:0 (31.34%), iso-C17:0 3-OH (13.65%), iso-C16:0 3-OH (10.61%), and iso-C15:1 G (10.38%). The polar lipids comprised phosphatidylglycerol, diphosphatidylglycerol, aminophospholipid, aminolipid, glycolipid, and sphingolipid. The major respiratory quinone was menaquinone-6 (MK-6) and the DNA G + C content of strain RR4-40T was 37.4 mol%. According to the polyphasic analysis, strain RR4-40T is considered to represent a novel genus within the family Flavobacteriaceae, for which the name Rasiella rasia gen. nov, sp. nov. is proposed. The type strain is RR4-40T (= KCTC 52650T = MCCC 1K04210T).
Review
Transmissibility and pathogenicity of SARS-CoV-2 variants in animal models
Young-Il Kim , Mark Anthony B. Casel , Young Ki Choi
J. Microbiol. 2022;60(3):255-267.   Published online March 2, 2022
DOI: https://doi.org/10.1007/s12275-022-2033-z
  • 25 View
  • 0 Download
  • 8 Citations
AbstractAbstract
As of February 2022, SARS-CoV-2 is still one of the most serious public health threats due to its high mortality rate and rapid spread of novel variants. Since the first outbreak in 2019, general understanding of SARS-CoV-2 has been improved through basic and clinical studies; however, knowledge gaps still exist in our understanding of the emerging novel SARSCoV- 2 variants, which impacts the corresponding development of vaccines and therapeutics. Especially, accumulation of mutations in SARS-CoV-2 and rapid spread in populations with previous immunity has resulted in selection of variants that evade the host immune response. This phenomenon threatens to render current SARS-CoV-2 vaccines ineffective for controlling the pandemic. Proper animal models are essential for detailed investigations into the viral etiology, transmission and pathogenesis mechanisms, as well as evaluation of the efficacy of vaccine candidates against recent SARS-CoV-2 variants. Further, the choice of animal model for each research topic is important for researchers to gain better knowledge of recent SARS-CoV-2 variants. Here, we review the advantages and limitations of each animal model, including mice, hamsters, ferrets, and non-human primates, to elucidate variant SARS-CoV-2 etiology and transmission and to evaluate therapeutic and vaccine efficacy.
Journal Article
Structural and biochemical analysis of the PTPN4 PDZ domain bound to the C-terminal tail of the human papillomavirus E6 oncoprotein
Hye Seon Lee , Hye-Yeoung Yun , Eun-Woo Lee , Ho-Chul Shin , Seung Jun Kim , Bonsu Ku
J. Microbiol. 2022;60(4):395-401.   Published online January 28, 2022
DOI: https://doi.org/10.1007/s12275-022-1606-1
  • 19 View
  • 0 Download
  • 6 Citations
AbstractAbstract
High-risk genotypes of human papillomaviruses (HPVs) are directly implicated in various abnormalities associated with cellular hyperproliferation, including cervical cancer. E6 is one of two oncoproteins encoded in the HPV genome, which recruits diverse PSD-95/Dlg/ZO-1 (PDZ) domain-containing human proteins through its C-terminal PDZ-binding motif (PBM) to be degraded by means of the proteasome pathway. Among the three PDZ domain-containing protein tyrosine phosphatases, protein tyrosine phosphatase non-receptor type 3 (PTPN3) and PTPN13 were identified to be recognized by HPV E6 in a PBM-dependent manner. However, whether HPV E6 associates with PTPN4, which also has a PDZ domain and functions as an apoptosis regulator, remains undetermined. Herein, we present structural and biochemical evidence demonstrating the direct interaction between the PBM of HPV16 E6 and the PDZ domain of human PTPN4 for the first time. X-ray crystallographic structure determination and binding measurements using isothermal titration calorimetry demonstrated that hydrophobic interactions in which Leu158 of HPV16 E6 plays a key role and a network of intermolecular hydrogen bonds sustain the complex formation between PTPN4 PDZ and the PBM of HPV16 E6. In addition, it was verified that the corresponding motifs from several other highrisk HPV genotypes, including HPV18, HPV31, HPV33, and HPV45, bind to PTPN4 PDZ with comparable affinities, suggesting that PTPN4 is a common target of various pathogenic HPV genotypes.
Review
Coordinated regulation of interferon and inflammasome signaling pathways by SARS-CoV-2 proteins
Na-Eun Kim , Yoon-Jae Song
J. Microbiol. 2022;60(3):300-307.   Published online January 28, 2022
DOI: https://doi.org/10.1007/s12275-022-1502-8
  • 18 View
  • 0 Download
  • 5 Citations
AbstractAbstract
Type I and III interferons (IFNs) and the nucleotide-binding domain (NBD) leucine-rich repeat (LRR)-containing receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome play pivotal roles in the pathogenesis of SARS-CoV-2. While optimal IFN and inflammasome responses are essential for limiting SARS-CoV-2 infection, aberrant activation of these innate immune responses is associated with COVID-19 pathogenesis. In this review, we focus our discussion on recent findings on SARS-CoV-2-induced type I and III IFNs and NLRP3 inflammasome responses and the viral proteins regulating these mechanisms.
Journal Article
Geographic diversity in Helicobacter pylori oipA genotype between Korean and United States isolates
Aeryun Kim , Jing Lai , D. Scott Merrell , Ji-Hye Kim , Hanfu Su , Jeong-Heon Cha
J. Microbiol. 2021;59(12):1125-1132.   Published online October 31, 2021
DOI: https://doi.org/10.1007/s12275-021-1450-8
  • 20 View
  • 0 Download
  • 3 Citations
AbstractAbstract
Helicobacter pylori outer membrane inflammatory protein A (OipA) was originally named for its role in inducing inflammation in the host, as evidenced by high mucosal IL-8 levels. Expression of OipA is regulated by phase variation of a CT dinucleotide-repeat located in the 5􍿁􀁇region of the gene. However, little is known about OipA geographic diversity across isolates. To address this gap, we conducted a large-scale molecular epidemiologic analysis using H. pylori clinical isolates obtained from two geographically distinct populations: Korea and the United States (US). Most Korean isolates (98.7%) possessed two copies of oipA located at two specific loci (A and B) while all US isolates contained only one copy of oipA at locus A. Furthermore, most Korean oipA (94.8%) possessed three or less CT repeats while most US oipA (96.6%) contained five or more CT repeats. Among the two copies, all Korean H. pylori possessed at least one oipA ‘on’ phase variant while the single copy of oipA in US isolates showed 56.2% ‘on’ and 43.8% ‘off.’ Thus, host differences seem to have driven geographic diversification of H. pylori across these populations such that OipA expression in US isolates is still regulated by phase variation with 5 or more CT repeats, while Korean isolates always express OipA; duplication of the oipA combined with a reduction of CT repeats to three or less ensures continued expression. En masse, these findings suggest that diversity in the oipA gene copy number, CT repeats, and phase variation among H. pylori from different populations may confer a benefit in adaptation to particular host populations.
Review
Overview of bioinformatic methods for analysis of antibiotic resistome from genome and metagenome data
Kihyun Lee , Dae-Wi Kim , Chang-Jun Cha
J. Microbiol. 2021;59(3):270-280.   Published online February 23, 2021
DOI: https://doi.org/10.1007/s12275-021-0652-4
  • 12 View
  • 0 Download
  • 16 Citations
AbstractAbstract
Whole genome and metagenome sequencing are powerful approaches that enable comprehensive cataloging and profiling of antibiotic resistance genes at scales ranging from a single clinical isolate to ecosystems. Recent studies deal with genomic and metagenomic data sets at larger scales; therefore, designing computational workflows that provide high efficiency and accuracy is becoming more important. In this review, we summarize the computational workflows used in the research field of antibiotic resistome based on genome or metagenome sequencing. We introduce workflows, software tools, and data resources that have been successfully employed in this rapidly developing field. The workflow described in this review can be used to list the known antibiotic resistance genes from genomes and metagenomes, quantitatively profile them, and investigate the epidemiological and evolutionary contexts behind their emergence and transmission. We also discuss how novel antibiotic resistance genes can be discovered and how the association between the resistome and mobilome can be explored.
Journal Article
Biosynthesis of adipic acid in metabolically engineered Saccharomyces cerevisiae
Xi Zhang , Yingli Liu , Jing Wang , Yunying Zhao , Yu Deng
J. Microbiol. 2020;58(12):1065-1075.   Published online October 23, 2020
DOI: https://doi.org/10.1007/s12275-020-0261-7
  • 16 View
  • 0 Download
  • 13 Citations
AbstractAbstract
Adipic Acid (AA) is a valued platform chemical compound, which can be used as a precursor of nylon-6,6. Due to the generation of an enormous amount of nitric oxide metabolites and the growing depletion of oil resources as a result of AA production from a mixture of cyclohexanol and cyclohexanone, the microbial methods for synthesizing AA have attracted significant attention. Of the several AA-producing pathways, the reverse adipate degradation pathway in Thermobifida fusca (Tfu RADP) is reported to be the most efficient, which has been confirmed in Escherichia coli. In this study, the heterologous Tfu RADP was constructed for producing AA in S. cerevisiae by co-expressing genes of Tfu_ 0875, Tfu_2399, Tfu_0067, Tfu_1647, Tfu_2576, and Tfu_ 2576. The AA titer combined with biomass, cofactors and other by-products was all determined after fermentation. During batch fermentation in a shake flask, the maximum AA titer was 3.83 mg/L, while the titer increased to 10.09 mg/L during fed-batch fermentation in a 5-L bioreactor after fermentation modification.
Published Erratum
Erratum to: Protective and Pathogenic Role of Humoral Responses in COVID‑19
Uni Park , Nam-Hyuk Cho
J. Microbiol. 2023;61(7):713-713.
DOI: https://doi.org/10.1007/s12275-023-00058-0
  • 21 View
  • 0 Download
AbstractAbstract

Journal of Microbiology : Journal of Microbiology
TOP