A probability identification matrix of acidophilic Streptomyces was constructed. The phenetic data of the strains were derived from numerical classification described by Seong et al. The minimum number of diagnostic characters was determined using computer programs for calculation of different separation indices. The resulting matrix consisted of 25 clusters versus 53 characters. Theoretical evaluation of this matrix was achieved by estimating the cluster overlap and the identification scores for the Hypothetical Median Organisms (HMO) and for the representatives of each cluster. Cluster overlap was found to be relatively small. Identification scores for the HMO and the randomly selected representatives of each cluster were satisfactory. The matrix was assessed practically by applying the matrix to the identification of unknown isolates. Of the unknown isolates, 71.9% were clearly identified to one of eight clusters. The numerical classification data was also used to design a selective isolation medium for antibiotic-producing organisms. Four chemical substances including 2 antibiotics were determined by the DLACHAR program as diagnostic for the isolation of target organisms which have antimicrobial activity against Micrococcus luteus. It was possible to detect the increased rate of selective isolation on the synthesized medium. The results show that the numerical phenetic data can be applied to a variety of purposes, such as construction of identification matrix and selective isolation medium for acidophilic antinomycetes.