Previously, we observed butanal/propanal sensitivity of Escherichia coli K-12 when cells overexpress YqhD protein, a NADPH dependent aldehyde reductase, possibly due to an accumulation of butanol/propanol in vivo as the reaction products. Based on this finding, we developed a suicidal vector-cloning system derived from pUC19, in which lacZ was substituted with the yqhD gene. As a result, when foreign DNA was inserted into its multiple cloning sites by disrupting an expression of YqhD, the recombinants survived on butanal/propanal containing plate, whereas cells containing the YqhD vector died because of the alcohol production by YqhD. The cloning efficiency, estimated based on colony PCR and enzyme digestion, was achieved more than 90% when the suicidal vector system was used. Moreover, the plasmid vector itself was stably maintained in the cell, presumably due to its ability to remove toxic aldehydes being accumulated in E. coli cell by metabolic stress.