Warning: mkdir(): Permission denied in /home/virtual/lib/view_data.php on line 81

Warning: fopen(upload/ip_log/ip_log_2024-09.txt): failed to open stream: No such file or directory in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
Hrq1 Facilitates Nucleotide Excision Repair of DNA Damage Induced by 4-Nitroquinoline-1-Oxide and Cisplatin in Saccharomyces cerevisiae
Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Articles

Page Path
HOME > J. Microbiol > Volume 52(4); 2014 > Article
Research Support, Non-U.S. Gov't
Hrq1 Facilitates Nucleotide Excision Repair of DNA Damage Induced by 4-Nitroquinoline-1-Oxide and Cisplatin in Saccharomyces cerevisiae
Do-Hee Choi , Moon-Hee Min , Min-Ji Kim , Rina Lee , Sung-Hun Kwon , Sung-Ho Bae
Journal of Microbiology 2014;52(4):292-298
DOI: https://doi.org/10.1007/s12275-014-4018-z
Published online: March 29, 2014
Department of Biological Sciences, College of Natural Science, Inha University, Incheon 402-751, Republic of KoreaDepartment of Biological Sciences, College of Natural Science, Inha University, Incheon 402-751, Republic of Korea
Corresponding author:  Sung-Ho Bae , Tel: +82-32-860-7712, 
Received: 13 January 2014   • Revised: 12 February 2014   • Accepted: 16 February 2014
prev next
  • 4 Views
  • 0 Download
  • 0 Crossref
  • 16 Scopus

Hrq1 helicase is a novel member of the RecQ family. Among the five human RecQ helicases, Hrq1 is most homologous to RECQL4 and is conserved in fungal genomes. Recent genetic and biochemical studies have shown that it is a functional gene, involved in the maintenance of genome stability. To better define the roles of Hrq1 in yeast cells, we investigated genetic interactions between HRQ1 and several DNA repair genes. Based on DNA damage sensitivities induced by 4-nitroquinoline- 1-oxide (4-NQO) or cisplatin, RAD4 was found to be epistatic to HRQ1. On the other hand, mutant strains defective in either homologous recombination (HR) or postreplication repair (PRR) became more sensitive by additional deletion of HRQ1, indicating that HRQ1 functions in the RAD4-dependent nucleotide excision repair (NER) pathway independent of HR or PRR. In support of this, yeast twohybrid analysis showed that Hrq1 interacted with Rad4, which was enhanced by DNA damage. Overexpression of Hrq1K318A helicase-deficient protein rendered mutant cells more sensitive to 4-NQO and cisplatin, suggesting that helicase activity is required for the proper function of Hrq1 in NER.

  • Cite this Article
    Cite this Article
    export Copy Download
    Close
    Download Citation
    Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

    Format:
    • RIS — For EndNote, ProCite, RefWorks, and most other reference management software
    • BibTeX — For JabRef, BibDesk, and other BibTeX-specific software
    Include:
    • Citation for the content below
    Hrq1 Facilitates Nucleotide Excision Repair of DNA Damage Induced by 4-Nitroquinoline-1-Oxide and Cisplatin in Saccharomyces cerevisiae
    J. Microbiol. 2014;52(4):292-298.   Published online March 29, 2014
    Close
Related articles

Journal of Microbiology : Journal of Microbiology
TOP