A group of 124 Enterobacteriaceae isolates resistant to third generation cephalosporins, and collected in distinct health care facilities of different Portuguese regions was analysed. The great majority of the isolates were also resistant to fourth generation cephalosporins (83.9%), monobactam (96%), amoxicillin plus clavulanic acid (85.5%), and piperacillin plus tazobactam (66.9%). Overall, 84.7% (105/124) were multidrug resistant. Molecular methods enabled us to identify 86.3% (107/124) extended-spectrum β-lactamases (ESBL) producers, revealing a diversity of class A β-lactamases from different families, like TEM (TEM-1, TEM-10, TEM-24, and TEM-52), SHV (SHV-1, SHV-12, and SHV-28), CTX-M (CTX-M-1, CTX-M-9, CTX-M-14, CTX-M-15, and CTXM-32), and GES (GES-1). We have also detected class C enzymes like plasmid-mediated AmpC β-lactamases (PMAβs, DHA-1, and CMY-2) and chromosomal AmpCs in Enterobacter and Citrobacter spp. The PMAβ genetic context mapping suggests association with mobile elements, plasmid importation and the potential emergence of these β-lactamases. The most prevalent β-lactamase detected was CTX-M-15 (66.1%) and in 41.1% of the isolates it was associated with TEM-, OXA-type β-lactamases and Aac(6)’-Ib-cr, which might indicate that the respective genotype has settled in our country. Indeed, CTX-M-15 was distributed amongst distinct clinical settings of several health care facilities (93.5%) from various regions. We provide evidence of a concerning clinical situation that includes vast occurrence of ESBLs, the settling of CTX-M β-lactamases, and the report of plasmidic and chromosomal AmpC in Portugal.