Warning: mkdir(): Permission denied in /home/virtual/lib/view_data.php on line 81

Warning: fopen(upload/ip_log/ip_log_2024-09.txt): failed to open stream: No such file or directory in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
Role of the Amino Acid Residued in the Catalysis of Catechol 2,3-dioxygenase from Pseudomonas putida SU10 as Probed by Chemical Modification and Random Mutagenesis
Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Articles

Page Path
HOME > J. Microbiol > Volume 35(4); 1997 > Article
Role of the Amino Acid Residued in the Catalysis of Catechol 2,3-dioxygenase from Pseudomonas putida SU10 as Probed by Chemical Modification and Random Mutagenesis
Park, Sun Jung 1, park, Jin Mo 2, Lee, Byeong Jae 2, Min, Kyung Hee 1
Journal of Microbiology 1997;35(4):300-308

¹Department of Biology, Sookmyung Womens University; ²Institute for Molecular Biology and Genetics, Seoul National University¹Department of Biology, Sookmyung Womens University; ²Institute for Molecular Biology and Genetics, Seoul National University
Corresponding author:  Min, Kyung Hee ,
prev next
  • 2 Views
  • 0 Download
  • 0 Crossref
  • 0 Scopus

The catechol 2,3-dioxygenase (C23O) encoded by the Pseudomonas putida xylE gene was over-produced in Escherichia coli and purified to homogeneity. The activity of the C23O required the reduced form of the Fe(II) ion since the enzyme was highly susceptible to inactivation with hydrogen perocide but reactivated with the addition of ferrous sulfate in conjunction with ascorbic acid. The C23O activity was abolished by treatment with the chemical reagents, diethyl-pyrocarbonate (DEPC), tetranitromethane (TNM), and 1-cyclohexy1-3-(2-morpholinoethyl) car-bodiimidemetho-ρ-toluenesulfontate (CMC), which are modifying reagents of histidine, tyrosine and glutamic acid, respectively. These results suggest that histidine, tyrosine and glutamic acid residues may be good active sites for the enzyme activity. These amino acid residues are conserved residues may be good active sites for the enzyme activity. These amino acid residues are conserved residues among several extradion dioxygenases and have the chemical potential to serveas ligands for Fe(II) coordination. Analysis of random point mutants in the C23O gene derived by PCR technique revealed that the mutated positions of two mutants, T179S and S211R, were located near the conserved His165 amd Hos217 residues, respectively. This finding indicates that these two positions, along with the conserved histidine residues, are specially effective regions for the enzyme function.

  • Cite this Article
    Cite this Article
    export Copy Download
    Close
    Download Citation
    Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

    Format:
    • RIS — For EndNote, ProCite, RefWorks, and most other reference management software
    • BibTeX — For JabRef, BibDesk, and other BibTeX-specific software
    Include:
    • Citation for the content below
    Role of the Amino Acid Residued in the Catalysis of Catechol 2,3-dioxygenase from Pseudomonas putida SU10 as Probed by Chemical Modification and Random Mutagenesis
    J. Microbiol. 1997;35(4):300-308.
    Close
Related articles

Journal of Microbiology : Journal of Microbiology
TOP