Density functional theory (DFT) calculations were used to explore the relationship between the biotransformation of dibenzo-p-dioxin and selected chlorinated derivatives by resting cells of Sphingomonas wittichii RW1 and measuring the thermodynamic properties of the biotransformation substrates. Sphingomonas wittichii RW1 can aerobically catabolize dibenzo-p-dioxin as well as 2,7-dichloro-, 1,2,3-trichloro-, 1,2,3,4-tetrachloro-, and 1,2,3,4,7,8-hexachlorodibenzo-pdioxin; however, neither the 2,3,7-trichloro- nor the 1,2,3,7,8-pentachlorodibenzo-p-dioxin was transformed to its corresponding metabolic intermediate. The experimental biotransformation rates established were apparently governed by the selected thermodynamic properties of the substrates tested.