Interferon regulatory factor-5 (IRF-5), a member of the mammalian IRF transcription factor family, is regulated by p53, type I interferon and virus infection. IRF-5 participates in virus-induced TLR-mediated innate immune responses and may play a role as a tumor suppressor. It was suppressed in various EBV-infected transformed cells, thus it is valuable to identify the suppression mechanism. We focused on a promoter CpG islands methylation, a kind of epigenetic regulation in EBV-associated Burkitt’s lymphomas (BLs) and gastric carcinomas. IRF-5 is not detected in most of EBV-infected BL cell lines due to hypermethylation of IRF-5 distal promoter (promoter-A), which was restored by a demethylating agent, 5-aza-2-deoxycytidine. Hypomethylation of CpG islands in promoter-A was observed only in EBV type III latent infected BL cell lines (LCL and Mutu III). Similarly, during EBV infection to Akata-4E3 cells, IRF-5 was observed at early time periods (2 days to 8 weeks), concomitant unmethylation of promoter-A, but suppressed in later infection periods as observed in latency I BL cell lines. Moreover, hypermethylation in IRF-5 promoter-A region was also observed in EBV-associated gastric carcinoma (EBVaGC) cell lines or primary gastric carcinoma tissues, which show type I latent infection. In summary, IRF-5 is suppressed by hypermethylation of its promoter-A in most of EBV-infected transformed cells, especially BLs and EBVaGC. EBV-induced carcinogenesis takes an advantage of proliferative effects of TLR signaling, while limiting IRF-5 mediated negative effects in the establishment of EBVaGCs.