2-deoxyribose-5-phosphate aldolase (DERA) is a class I aldolase
that catalyzes aldol condensation of two aldehydes in the
active site, which is particularly germane in drug manufacture.
Structural and biochemical studies have shown that the active
site of DERA is typically loosely packed and displays broader
substrate specificity despite sharing conserved folding architecture
with other aldolases. The most distinctive structural
feature of DERA compared to other aldolases is short
and flexible C-terminal region. This region is also responsible
for substrate recognition. Therefore, substrate tolerance may
be related to the C-terminal structural features of DERA. Here,
we determined the crystal structures of full length and C-terminal
truncated DERA from Streptococcus suis (SsDERA).
In common, both contained the typical (α/β)8 TIM-barrel
fold of class I aldolases. Surprisingly, C-terminal truncation
result
ing in missing the last α9 and β8 secondary elements,
allowed DERA to maintain activity comparable to the fulllength
enzyme. Specifically, Arg186 and Ser205 residues at the
C-terminus appeared mutually supplemental or less indispensible
for substrate phosphate moiety recognition. Our results
suggest that DERA might adopt a shorter C-terminal region
than conventional aldolases during evolution pathway, resulting
in a broader range of substrate tolerance through active
site flexibility.