Abstract
Cr(VI) pollution is increasing continuously as a result of ongoing
industrialization. In this study, we investigated the
thermophilic denitrifying bacterium Chelatococcus daeguensis
TAD1, isolated from the biofilm of a biotrickling filter used
in nitrogen oxides (NOX) removal, with respect to its ability
to remove Cr(VI) from an aqueous solution. TAD1 was capable
of reducing Cr(VI) from an initial concentration of
10 mg/L to non-detectable levels over a pH range of 7–9 and
at a temperature range of 30–50°C. TAD1 simultaneously
removed both Cr(VI) and NO3
−-N at 50°C, when the pH
was 7 and the initial Cr(VI) concentration was 15 mg/L.
The reduction of Cr(VI) to Cr(III) correlated with the growth
metabolic activity of TAD1. The presence of other heavy
metals (Cu, Zn, and Ni) inhibited the ability of TAD1 to remove
Cr(VI). The metals each individually inhibited Cr(VI)
removal, and the extent of inhibition increased in a cooperative
manner in the presence of a combination of the metals.
The addition of biodegradable cellulose acetate microspheres
(an adsorption material) weakened the toxicity of the heavy
metals; in their presence, the Cr(VI) removal efficiency returned
to a high level. The feasibility and applicability of simultaneous
nitrate removal and Cr(VI) reduction by strain
TAD1 is promising, and may be an effective biological method
for the clean-up of wastewater.
Citations
Citations to this article as recorded by

- Hexavalent Chromium Pollution and its Sustainable Management through Bioremediation
Anushka Paul, Sudeshna Dey, Deo Karan Ram, Alok Prasad Das
Geomicrobiology Journal.2024; 41(4): 324. CrossRef - Adsorption of Hg2+/Cr6+ by metal-binding proteins heterologously expressed in Escherichia coli
Shuting Hu, Zixiang Wei, Teng Liu, Xinyu Zuo, Xiaoqiang Jia
BMC Biotechnology.2024;[Epub] CrossRef - Growth-dependent cr(VI) reduction by Alteromonas sp. ORB2 under haloalkaline conditions: toxicity, removal mechanism and effect of heavy metals
G. Kiran Kumar Reddy, K. Kavibharathi, Anuroop Singh, Y. V. Nancharaiah
World Journal of Microbiology and Biotechnology.2024;[Epub] CrossRef - Hexavalent Cr, Its Toxicity and Removal Strategy: Revealing PGPB Potential in Its Remediation
Akanksha Gupta, Anubhuti Singh, Virendra Kumar Mishra
Water, Air, & Soil Pollution.2023;[Epub] CrossRef - Chromium Toxicity in Plants: Signaling, Mitigation, and Future Perspectives
Sajad Ali, Rakeeb A. Mir, Anshika Tyagi, Nazia Manzar, Abhijeet Shankar Kashyap, Muntazir Mushtaq, Aamir Raina, Suvin Park, Sandhya Sharma, Zahoor A. Mir, Showkat A. Lone, Ajaz A. Bhat, Uqab Baba, Henda Mahmoudi, Hanhong Bae
Plants.2023; 12(7): 1502. CrossRef - A comprehensive review on chromium (Cr) contamination and Cr(VI)-resistant extremophiles in diverse extreme environments
Zeeshanur Rahman, Lebin Thomas, Siva P. K. Chetri, Shrey Bodhankar, Vikas Kumar, Ravi Naidu
Environmental Science and Pollution Research.2023; 30(21): 59163. CrossRef - Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction
Pooja Sharma, Surendra Pratap Singh, Sheetal Kishor Parakh, Yen Wah Tong
Bioengineered.2022; 13(3): 4923. CrossRef - Reduced graphene oxide supported nanoscale zero-valent iron (nZVI/rGO) for in-situ remediation of Cr(VI)/nitrate-polluted aquifer
Xinyang Liu, Wanting Liu, Zifang Chi
Journal of Water Process Engineering.2022; 49: 103188. CrossRef - Simultaneous denitrification and hexavalent chromium removal by a newly isolated Stenotrophomonas maltophilia strain W26 under aerobic conditions
Qiang An, Shu-man Deng, Bin Zhao, Zheng Li, Jia Xu, Jia-Li Song
Environmental Chemistry.2021; 18(1): 20. CrossRef - Leucobacter coleopterorum sp. nov., Leucobacter insecticola sp. nov., and Leucobacter viscericola sp. nov., isolated from the intestine of the diving beetles, Cybister brevis and Cybister lewisianus, and emended description of the genus Leucobacter
Dong-Wook Hyun, Hojun Sung, Pil Soo Kim, Ji-Hyun Yun, Jin-Woo Bae
Journal of Microbiology.2021; 59(4): 360. CrossRef - Bioremediation of Chromium by Microorganisms and Its Mechanisms Related to Functional Groups
Abate Ayele, Yakob Godebo Godeto, Yifeng Zhang
Journal of Chemistry.2021; 2021: 1. CrossRef - Iron oxide minerals promote simultaneous bio-reduction of Cr(VI) and nitrate: Implications for understanding natural attenuation
Yutian Hu, Tong Liu, Nan Chen, Chuanping Feng
Science of The Total Environment.2021; 786: 147396. CrossRef - Cr(VI) reductase activity locates in the cytoplasm of Aeribacillus pallidus BK1, a novel Cr(VI)-reducing thermophile isolated from Tengchong geothermal region, China
Yan Ma, Hui Zhong, Zhiguo He
Chemical Engineering Journal.2019; 371: 524. CrossRef