Abstract
Bacteriophage endolysin is one of the most promising anti-biotic substitutes, but in Gram-negative bacteria, the outer membrane prevents the lysin from hydrolyzing peptidogly-cans and blocks the development of lysin applications. The prime strategy for new antibiotic substitutes is allowing lysin to access the peptidoglycan from outside of the bacteria by reformation of the lysin. In this study, the novel Escherichia coli (E. coli) phage lyase lysep3, which lacks outside-in cata-lytic ability, was fused with the N-terminal region of the Bacillus amyloliquefaciens lysin including its cell wall bind-ing domain D8 through the best manner of protein fusion based on the predicted tertiary structure of lysep3-D8 to ob-tain an engineered lysin that can lyse bacteria from the out-side. Our results showed that lysep3-D8 could lyse both Gram- negative and Gram-positive bacteria, whereas lysep3 and D8 have no impact on bacterial growth. The MIC of lysep3-D8 on E. coli CVCC1418 is 60 μg/ml; lysep3-D8 can inhibit the growth of bacteria up to 12 h at this concentration. The bac-tericidal spectrum of lysep3-D8 is broad, as it can lyse of all of 14 E. coli strains, 3 P. aeruginosa strains, 1 Acinetobacter baumannii strain, and 1 Streptococcus strain. Lysep3-D8 has sufficient bactericidal effects on the 14 E. coli strains tested at the concentration of 100 μg/ml. The cell wall binding do-main of the engineered lysin can destroy the integrity of the outer membrane of bacteria, thus allowing the catalytic do-main to reach its target, peptidoglycan, to lyse the bacteria. Lysep3-D8 can be used as a preservative in fodder to benefit the health of animals. The method we used here proved to be a successful exploration of the reformation of phage lysin.
Citations
Citations to this article as recorded by

- Engineering strategies and challenges of endolysin as an antibacterial agent against Gram‐negative bacteria
Tianyu Zheng, Can Zhang
Microbial Biotechnology.2024;[Epub] CrossRef - Role of hypothetical protein PA1-LRP in antibacterial activity of endolysin from a new Pantoea phage PA1
Ye Tian, Xinyan Xu, Munazza Ijaz, Ying Shen, Muhammad Shafiq Shahid, Temoor Ahmed, Hayssam M. Ali, Chengqi Yan, Chunyan Gu, Jianfei Lu, Yanli Wang, Gabrijel Ondrasek, Bin Li
Frontiers in Microbiology.2024;[Epub] CrossRef - New-Generation Antibacterial Agent—Cellulose-Binding Thermostable TP84_Endolysin
Małgorzata Ponikowska, Joanna Żebrowska, Piotr M. Skowron
International Journal of Molecular Sciences.2024; 25(23): 13111. CrossRef - Characterization of Pseudomonas aeruginosa bacteriophages and control hemorrhagic pneumonia on a mice model
Yanjie Zhang, Ruiqing Wang, Qingxia Hu, Ni Lv, Likun Zhang, Zengqi Yang, Yefei Zhou, Xinglong Wang
Frontiers in Microbiology.2024;[Epub] CrossRef - Advances in the development of phage-mediated cyanobacterial cell lysis
Haojie Jin, Wanzhao Ge, Mengzhe Li, Yan Wang, Yanjing Jiang, Jiaqi Zhang, Yike Jing, Yigang Tong, Yujie Fu
Critical Reviews in Biotechnology.2024; : 1. CrossRef - Biological and genomic characterization of a polyvalent phage PSH-1 against multidrug-resistant Salmonella Enteritidis
Shuai-Hua Li, Rui-Yun Wang, Jun-Kai Zhang, Kai-Fang Yi, Jian-Hua Liu, Hua Wu, Li Yuan, Ya-Jun Zhai, Gong-Zheng Hu
BMC Microbiology.2024;[Epub] CrossRef - Beyond antibiotics: phage-encoded lysins against Gram-negative pathogens
Sanket Shah, Ritam Das, Bhakti Chavan, Urmi Bajpai, Sarmad Hanif, Syed Ahmed
Frontiers in Microbiology.2023;[Epub] CrossRef - The Broad-Spectrum Endolysin LySP2 Improves Chick Survival after Salmonella Pullorum Infection
Hewen Deng, Mengjiao Li, Qiuyang Zhang, Chencheng Gao, Zhanyun Song, Chunhua Chen, Zhuo Wang, Xin Feng
Viruses.2023; 15(4): 836. CrossRef - Development of a Magnetic Bead-Based Method for Specific Detection of Enterococcus faecalis Using C-Terminal Domain of ECP3 Phage Endolysin
Yoon-Jung Choi, Shukho Kim, Jungmin Kim
Journal of Microbiology and Biotechnology.2023; 33(7): 964. CrossRef - Identification of Three Campylobacter Lysins and Enhancement of Their Anti-Escherichia coli Efficacy Using Colicin-Based Translocation and Receptor-Binding Domain Fusion
Peiqi Liu, Xinying Dong, Xuewei Cao, Qianmei Xie, Xiuqin Huang, Jinfei Jiang, Huilin Dai, Zheng Tang, Yizhen Lin, Saixiang Feng, Kaijian Luo, Jasna Kovac
Microbiology Spectrum.2023;[Epub] CrossRef - Isolation of Klebsiella pneumoniae Phage vB_KpnS_MK54 and Pathological Assessment of Endolysin in the Treatment of Pneumonia Mice Model
Biao Lu, Xueping Yao, Guangli Han, Zidan Luo, Jieru Zhang, Kang Yong, Yin Wang, Yan Luo, Zexiao Yang, Meishen Ren, Suizhong Cao
Frontiers in Microbiology.2022;[Epub] CrossRef - How Good are Bacteriophages as an Alternative Therapy to Mitigate Biofilms of Nosocomial Infections
Aditi Singh, Sudhakar Padmesh, Manish Dwivedi, Irena Kostova
Infection and Drug Resistance.2022; Volume 15: 503. CrossRef - Complete genome sequencing of a Tequintavirus bacteriophage with a broad host range against Salmonella Abortus equi isolates from donkeys
Wenhua Liu, Letian Han, Peng Song, Huzhi Sun, Can Zhang, Ling Zou, Jiaqi Cui, Qiang Pan, Huiying Ren
Frontiers in Microbiology.2022;[Epub] CrossRef - Characterization of Salmonella endolysin XFII produced by recombinant Escherichia coli and its application combined with chitosan in lysing Gram-negative bacteria
Shuhang Zhang, Yan Chang, Qing Zhang, Yingbo Yuan, Qingsheng Qi, Xuemei Lu
Microbial Cell Factories.2022;[Epub] CrossRef - The endolysin of the Acinetobacter baumannii phage vB_AbaP_D2 shows broad antibacterial activity
Yuyu Yuan, Xiaoyu Li, Lili Wang, Gen Li, Cong Cong, Ruihua Li, Huijing Cui, Bilal Murtaza, Yongping Xu
Microbial Biotechnology.2021; 14(2): 403. CrossRef - Lysins breaking down the walls of Gram-negative bacteria, no longer a no-go
Diana Gutiérrez, Yves Briers
Current Opinion in Biotechnology.2021; 68: 15. CrossRef - The Advantages and Challenges of Using Endolysins in a Clinical Setting
Ellen Murray, Lorraine A. Draper, R. Paul Ross, Colin Hill
Viruses.2021; 13(4): 680. CrossRef - The strategy of biopreservation of meat product against MRSA using lytic domain of lysin from Staphylococcus aureus bacteriophage
Jiai Yan, Ruijin Yang, Shuhuai Yu, Wei Zhao
Food Bioscience.2021; 41: 100967. CrossRef - Phage vB_PaeS-PAJD-1 Rescues Murine Mastitis Infected With Multidrug-Resistant Pseudomonas aeruginosa
Zhaofei Wang, Yibing Xue, Ya Gao, Mengting Guo, Yuanping Liu, Xinwei Zou, Yuqiang Cheng, Jingjiao Ma, Hengan Wang, Jianhe Sun, Yaxian Yan
Frontiers in Cellular and Infection Microbiology.2021;[Epub] CrossRef - Opportunities for broadening the application of cell wall lytic enzymes
Amala Bhagwat, Monica Mixon, Cynthia H. Collins, Jonathan S. Dordick
Applied Microbiology and Biotechnology.2020; 104(21): 9019. CrossRef - Gram-Negative Bacterial Lysins
Chandrabali Ghose, Chad W. Euler
Antibiotics.2020; 9(2): 74. CrossRef - Bacteriophage-derived endolysins to target gram-negative bacteria
Wing Ching Bianca Lai, Xi Chen, Marco Kai Yuen Ho, Jiang Xia, Sharon Shui Yee Leung
International Journal of Pharmaceutics.2020; 589: 119833. CrossRef - Bacteriophages and Lysins as Possible Alternatives to Treat Antibiotic-Resistant Urinary Tract Infections
Trinidad de Miguel, José Luis R. Rama, Carmen Sieiro, Sandra Sánchez, Tomas G. Villa
Antibiotics.2020; 9(8): 466. CrossRef - Managing urinary tract infections through phage therapy: a novel approach
Shikha Malik, Parveen Kaur Sidhu, J.S. Rana, Kiran Nehra
Folia Microbiologica.2020; 65(2): 217. CrossRef - Endolysins as emerging alternative therapeutic agents to counter drug-resistant infections
Vijay Singh Gondil, Kusum Harjai, Sanjay Chhibber
International Journal of Antimicrobial Agents.2020; 55(2): 105844. CrossRef - External lysis of Escherichia coli by a bacteriophage endolysin modified with hydrophobic amino acids
Guangmou Yan, Rui Yang, Kejia Fan, Hanlin Dong, Chencheng Gao, Shuang Wang, Ling Yu, Zhe Cheng, Liancheng Lei
AMB Express.2019;[Epub] CrossRef - Phage Lysins for Fighting Bacterial Respiratory Infections: A New Generation of Antimicrobials
Roberto Vázquez, Ernesto García, Pedro García
Frontiers in Immunology.2018;[Epub] CrossRef - Synthetic biology of modular endolysins
Hans Gerstmans, Bjorn Criel, Yves Briers
Biotechnology Advances.2018; 36(3): 624. CrossRef - Isolation and identification of Salmonella pullorum bacteriophage YSP2 and its use as a therapy for chicken diarrhea
Kunyuan Tie, Yuyu Yuan, Shiqing Yan, Xi Yu, Qiuyang Zhang, Huihui Xu, Yang Zhang, Jingmin Gu, Changjiang Sun, Liancheng Lei, Wenyu Han, Xin Feng
Virus Genes.2018; 54(3): 446. CrossRef - Engineering of Phage-Derived Lytic Enzymes: Improving Their Potential as Antimicrobials
Carlos São-José
Antibiotics.2018; 7(2): 29. CrossRef - Expression of a Peptidoglycan Hydrolase from Lytic Bacteriophages Atu_ph02 and Atu_ph03 Triggers Lysis of Agrobacterium tumefaciens
Hedieh Attai, Jeanette Rimbey, George P. Smith, Pamela J. B. Brown, M. Julia Pettinari
Applied and Environmental Microbiology.2017;[Epub] CrossRef