White colony-forming yeasts (WCFYs) often appear in fermented
foods, depending on the storage method. Despite
the ongoing research on fermented foods, the community
and genome features of WCFYs have not been well studied.
In this study, the community structures of WCFYs on fermented
vegetables (kimchi) prepared with various raw materials
were investigated using deep sequencing. Only eight
operational taxonomic units (OTUs) were detected, indicating
that the community structure of WCFYs on kimchi is very
simple. The five most abundant OTUs represented Pichia
kluyveri, Yarrowia lipolytica, Candida sake, Hanseniaspora
uvarum, and Kazachstania servazzii. Using a culture-dependent
method
, 41 strains representing the five major OTUs
were isolated from the surface of the food samples. Whole
genomes of the five major yeast strains were sequenced and
annotated. The total genome length for the strains ranged
from 8.97 Mbp to 21.32 Mbp. This is the first study to report
genome sequences of the two yeasts Pichia kluyveri and Candida
sake. Genome analysis indicated that each yeast strain
had core metabolic pathways such as oxidative phosphorylation;
purine metabolism; glycolysis/gluconeogenesis; aminoacyl-
tRNA biosynthesis; citrate cycle; but strain specific
pathways were also found. In addition, no toxin or antimicrobial
resistance genes were identified. Our study provides
genome information for five WCFY strains that may highlight
their potential beneficial or harmful metabolic effects
in fermented vegetables.