Beta haemolytic Group A streptococcus (GAS) or Streptococcus pyogenes are strict human pathogens responsible for mild to severe fatal invasive infections. Even with enormous number of reports exploring the role of S. pyogenes exotoxins in its pathogenesis, inadequate knowledge on the biofilm process and the potential role of exotoxins in bacterial dissemination from matured biofilms has been a hindrance in development of effective and targeted treatments. Therefore, the present study was aimed in investigating the uncharted role of these exotoxins in biofilm process. Through our study the putative role of ciaRH in the SpeA dependent ablation of biofilm formation could be speculated and thus helping in bacterial dissemination. The seed-dispersal effect of SpeA was time and concentration dependent and seen to be consistent within various streptococcal species. Transcriptome analysis of SpeA treated S. pyogenes biofilms revealed the involvement of many transcriptional regulators (ciaRH) and response genes (luxS, shr, shp, SPy_0572), hinting towards specific mechanisms underlying the dispersal effect by SpeA. This finding opens up a discussion towards understanding a new mechanism involved in the pathogenesis of Streptococcus pyogenes and might help in understanding the bacterial infections in a better way.