Abstract
Lignocellulose composed of complex carbohydrates and aromatic
heteropolymers is one of the principal materials for
the production of renewable biofuels. Lignocellulose-degrading
genes from cold-adapted bacteria have a potential to increase
the productivity of biological treatment of lignocellulose
biomass by providing a broad range of treatment temperatures.
Antarctic soil metagenomes allow to access novel
genes encoding for the cold-active lignocellulose-degrading
enzymes, for biotechnological and industrial applications.
Here, we investigated the metagenome targeting cold-adapted
microbes in Antarctic organic matter-rich soil (KS 2-1) to
mine lignolytic and celluloytic enzymes by performing single
molecule, real-time metagenomic (SMRT) sequencing. In the
assembled Antarctic metagenomic contigs with relative long
reads, we found that 162 (1.42%) of total 11,436 genes were
annotated as carbohydrate-active enzymes (CAZy). Actinobacteria,
the dominant phylum in this soil’s metagenome,
possessed most of candidates of lignocellulose catabolic genes
like glycoside hydrolase families (GH13, GH26, and GH5)
and auxiliary activity families (AA7 and AA3). The predicted
lignocellulose degradation pathways in Antarctic soil metagenome
showed synergistic role of various CAZyme harboring
bacterial genera including Streptomyces, Streptosporangium,
and Amycolatopsis. From phylogenetic relationships
with cellular and environmental enzymes, several genes having
potential for participating in overall lignocellulose degradation
were also found. The results indicated the presence
of lignocellulose-degrading bacteria in Antarctic tundra soil
and the potential benefits of the lignocelluolytic enzymes as
candidates for cold-active enzymes which will be used for the
future biofuel-production industry.
Citations
Citations to this article as recorded by

- Metagenomic insights into the lignocellulose degradation mechanism during short-term composting of peach sawdust: Core microbial community and carbohydrate-active enzyme profile analysis
Wei-Wei Zhang, Yu-Xin Guo, Qing-Jun Chen, Yi-Yang Wang, Qiu-Ying Wang, Ya-Ru Yang, Guo-Qing Zhang
Environmental Technology & Innovation.2025; 37: 103959. CrossRef - Comprehensive characterization and resistome analysis of Antarctic Pseudomonas migulae strain CAS19
Çiğdem Otur, Sezer Okay, Ömer Konuksever, Oğuzhan Duyar, Yılmaz Kaya, Aslıhan Kurt-Kızıldoğan
World Journal of Microbiology and Biotechnology.2024;[Epub] CrossRef - Response of carbohydrate-degrading enzymes and microorganisms to land use change in the southeastern Qinghai-Tibetan Plateau, China
Renhuan Zhu, Belayneh Azene, Piotr Gruba, Kaiwen Pan, Yalemzewd Nigussie, Awoke Guadie, Xiaoming Sun, Xiaogang Wu, Lin Zhang
Applied Soil Ecology.2024; 200: 105442. CrossRef - Investigating eukaryotic and prokaryotic diversity and functional potential in the cold and alkaline ikaite columns in Greenland
Mariane Schmidt Thøgersen, Athanasios Zervas, Peter Stougaard, Lea Ellegaard-Jensen
Frontiers in Microbiology.2024;[Epub] CrossRef - Bacterial Diversity, Metabolic Profiling, and Application Potential of Antarctic Soil Metagenomes
Mario Fernández, Salvador Barahona, Fernando Gutierrez, Jennifer Alcaíno, Víctor Cifuentes, Marcelo Baeza
Current Issues in Molecular Biology.2024; 46(11): 13165. CrossRef - Cold adaptation and response genes of Antarctic Cryobacterium sp. SO2 from the Fildes Peninsula, King George Island
Chui Peng Teoh, Marcelo González‑Aravena, Paris Lavin, Clemente Michael Vui Ling Wong
Polar Biology.2024; 47(2): 135. CrossRef - A bacterial cold-active dye-decolorizing peroxidase from an Antarctic Pseudomonas strain
Célica Cagide, Juan José Marizcurrena, Diego Vallés, Beatriz Alvarez, Susana Castro-Sowinski
Applied Microbiology and Biotechnology.2023; 107(5-6): 1707. CrossRef - Role of metagenomics in prospecting novel endoglucanases, accentuating functional metagenomics approach in second-generation biofuel production: a review
Ninian Prem Prashanth Pabbathi, Aditya Velidandi, Tanvi Tavarna, Shreyash Gupta, Ram Sarvesh Raj, Pradeep Kumar Gandam, Rama Raju Baadhe
Biomass Conversion and Biorefinery.2023; 13(2): 1371. CrossRef - Different Response of Plant- and Microbial-Derived Carbon Decomposition Potential between Alpine Steppes and Meadows on the Tibetan Plateau
Yanhong Yuan, Lan Chen, Jieying Wang, Yanfang Liu, Chengjie Ren, Yaoxin Guo, Jun Wang, Ninglian Wang, Fazhu Zhao, Wenying Wang
Forests.2023; 14(8): 1580. CrossRef - Investigation of cold-active and mesophilic cellulases: opportunities awaited
Sambhaji Chavan, Ashvini Shete, Yasmin Mirza, Mahesh S. Dharne
Biomass Conversion and Biorefinery.2023; 13(10): 8829. CrossRef - Cold-Adapted Proteases: An Efficient and Energy-Saving Biocatalyst
Zhengfeng Yang, Zhendi Huang, Qian Wu, Xianghua Tang, Zunxi Huang
International Journal of Molecular Sciences.2023; 24(10): 8532. CrossRef - Reclamation of abandoned saline-alkali soil increased soil microbial diversity and degradation potential
Fating Yin, Fenghua Zhang
Plant and Soil.2022; 477(1-2): 521. CrossRef - Recent advances in metagenomic analysis of different ecological niches for enhanced biodegradation of recalcitrant lignocellulosic biomass
Deepak Kukkar, Pushpender Kumar Sharma, Ki-Hyun Kim
Environmental Research.2022; 215: 114369. CrossRef - Novel bacterial taxa in a minimal lignocellulolytic consortium and their potential for lignin and plastics transformation
Carlos Andrés Díaz Rodríguez, Laura Díaz-García, Boyke Bunk, Cathrin Spröer, Katherine Herrera, Natalia A Tarazona, Luis M Rodriguez-R, Jörg Overmann, Diego Javier Jiménez
ISME Communications.2022;[Epub] CrossRef - The Use of Response Surface Methodology as a Statistical Tool for the Optimisation of Waste and Pure Canola Oil Biodegradation by Antarctic Soil Bacteria
Khadijah Nabilah Mohd Zahri, Azham Zulkharnain, Claudio Gomez-Fuentes, Suriana Sabri, Khalilah Abdul Khalil, Peter Convey, Siti Aqlima Ahmad
Life.2021; 11(5): 456. CrossRef - Comparison of Gut Microbiota between Gentoo and Adélie Penguins Breeding Sympatrically on Antarctic Ardley Island as Revealed by Fecal DNA Sequencing
Yin-Xin Zeng, Hui-Rong Li, Wei Han, Wei Luo
Diversity.2021; 13(10): 500. CrossRef - Deconstruction of Lignin: From Enzymes to Microorganisms
Jéssica P. Silva, Alonso R. P. Ticona, Pedro R. V. Hamann, Betania F. Quirino, Eliane F. Noronha
Molecules.2021; 26(8): 2299. CrossRef - Molecular Characterization of Novel Family IV and VIII Esterases from a Compost Metagenomic Library
Jong-Eun Park, Geum-Seok Jeong, Hyun-Woo Lee, Hoon Kim
Microorganisms.2021; 9(8): 1614. CrossRef - Illite/smectite clay regulating laccase encoded genes to boost lignin decomposition and humus formation in composting habitats revealed by metagenomics analysis
Qingran Meng, Susu Wang, Qiuqi Niu, Hailong Yan, Gen Li, Qiuhui Zhu, Qunliang Li
Bioresource Technology.2021; 338: 125546. CrossRef - Cultivation-independent and cultivation-dependent metagenomes reveal genetic and enzymatic potential of microbial community involved in the degradation of a complex microbial polymer
Ohana Y. A. Costa, Mattias de Hollander, Agata Pijl, Binbin Liu, Eiko E. Kuramae
Microbiome.2020;[Epub] CrossRef - Extremophile Microbial Communities and Enzymes for Bioenergetic Application Based on Multi-Omics Tools
Gislaine Fongaro, Guilherme Augusto Maia, Paula Rogovski, Rafael Dorighello Cadamuro, Joana Camila Lopes, Renato Simões Moreira, Aline Frumi Camargo, Thamarys Scapini, Fábio Spitza Stefanski, Charline Bonatto, Doris Sobral Marques Souza, Patrícia Hermes
Current Genomics.2020; 21(4): 240. CrossRef