Warning: mkdir(): Permission denied in /home/virtual/lib/view_data.php on line 81

Warning: fopen(upload/ip_log/ip_log_2024-09.txt): failed to open stream: No such file or directory in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
A histone deacetylase, MoHOS2 regulates asexual development and virulence in the rice blast fungus
Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Articles

Page Path
HOME > J. Microbiol > Volume 57(12); 2019 > Article
Journal Article
A histone deacetylase, MoHOS2 regulates asexual development and virulence in the rice blast fungus
Jongjune Lee , Jae-Joon Lee , Junhyun Jeon
Journal of Microbiology 2019;57(12):1115-1125
DOI: https://doi.org/10.1007/s12275-019-9363-5
Published online: November 22, 2019
Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, 38541, Republic of KoreaDepartment of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, 38541, Republic of Korea
Corresponding author:  Junhyun Jeon , Tel: +82-53-810-3030, 
Received: 24 July 2019   • Revised: 31 August 2019   • Accepted: 17 September 2019
prev next
  • 2 Views
  • 0 Download
  • 0 Crossref
  • 15 Scopus

Histone acetylation/deacetylation represent a general and efficient epigenetic mechanism through which fungal cells control gene expression. Here we report developmental requirement of MoHOS2-mediated histone deacetylation (HDAC) for the rice blast fungus, Magnaporthe oryzae. Structural similarity and nuclear localization indicated that MoHOS2 is an ortholog of Saccharomyces cerevisiae Hos2, which is a member of class I histone deacetylases and subunit of Set3 complex. Deletion of MoHOS2 led to 25% reduction in HDAC activity, compared to the wild-type, confirming that it is a bona-fide HDAC. Lack of MoHOS2 caused decrease in radial growth and impinged dramatically on asexual sporulation. Such reduction in HDAC activity and phenotypic defects of ΔMohos2 were recapitulated by a single amino acid change in conserved motif that is known to be important for HDAC activity. Expression analysis revealed up-regulation of MoHOS2 and concomitant down-regulation of some of the key genes involved in asexual reproduction under sporulation-promoting condition. In addition, the deletion mutant exhibited defect in appressorium formation from both germ tube tip and hyphae. As a result, ΔMohos2 was not able to cause disease symptoms. Wound-inoculation showed that the mutant is compromised in its ability to grow inside host plants as well. We found that some of ROS detoxifying genes and known effector genes are de-regulated in the mutant. Taken together, our data suggest that MoHOS2-dependent histone deacetylation is pivotal for proper timing and induction of transcription of the genes that coordinate developmental changes and host infection in M. oryzae.

  • Cite this Article
    Cite this Article
    export Copy Download
    Close
    Download Citation
    Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

    Format:
    • RIS — For EndNote, ProCite, RefWorks, and most other reference management software
    • BibTeX — For JabRef, BibDesk, and other BibTeX-specific software
    Include:
    • Citation for the content below
    A histone deacetylase, MoHOS2 regulates asexual development and virulence in the rice blast fungus
    J. Microbiol. 2019;57(12):1115-1125.   Published online November 22, 2019
    Close
Related articles

Journal of Microbiology : Journal of Microbiology
TOP