We measured the grazing and growth response of the mixotrophic
chrysomonad flagellate Poterioochromonas malhamensis
on four closely related picocyanobacterial strains isolated
from subalpine lakes in central Europe. The picocyanobacteria
represented different pigment types (phycoerythrin-
rich, PE, and phycocyanin-rich, PC) and phylogenetic
clusters. The grazing experiments were conducted with laboratory
cultures acclimated to 10 μmol photon/m2/sec (low
light, LL) and 100 μmol photon/m2/sec (moderate light, ML),
either in the dark or at four different irradiances ranging from
low (6 μmol photon/m2/sec) to high (1,500 μmol photon/m2/
sec) light intensity. Poterioochromonas malhamensis preferred
the larger, green PC-rich picocyanobacteria to the smaller,
red PE-rich picocyanobacterial, and heterotrophic bacteria.
The feeding and growth rates of P. malhamensis were sensitive
to the actual light conditions during the experiments;
the flagellate performed relatively better in the dark and at
LL conditions than at high light intensity. In summary, our
results
found strain-specific ingestion and growth rates of
the flagellate; an effect of the preculturing conditions, and,
unexpectedly, a direct adverse effect of high light levels. We
conclude that this flagellate may avoid exposure to high surface
light intensities commonly encountered in temperate
lakes during the summer.