Microbial communities in the rhizosphere play a crucial role
in determining plant growth and crop yield. A few studies
have been performed to evaluate the diversity and co-occurrence
patterns of rhizosphere microbiomes in soybean (Glycine
max) at a regional scale. Here, we used a culture-independent
method
to compare the bacterial communities of the
soybean rhizosphere between Nebraska (NE), a high-yield
state, and Oklahoma (OK), a low-yield state. It is well known
that the rhizosphere microbiome is a subset of microbes that
ultimately get colonized by microbial communities from the
surrounding bulk soil. Therefore, we hypothesized that differences
in the soybean yield are attributed to the variations in
the rhizosphere microbes at taxonomic, functional, and community
levels. In addition, soil physicochemical properties
were also evaluated from each sampling site for comparative
study. Our result showed that distinct clusters were formed
between NE and OK in terms of their soil physicochemical
property. Among 3 primary nutrients (i.e., nitrogen, phosphorus,
and potassium), potassium is more positively correlated
with the high-yield state NE samples. We also attempted
to identify keystone communities that significantly affected the
soybean yield using co-occurrence network patterns. Network
analysis revealed that communities formed distinct clusters
in which members of modules having significantly positive
correlations with the soybean yield were more abundant in
NE than OK. In addition, we identified the most influential
bacteria for the soybean yield in the identified modules. For
instance, included are class Anaerolineae, family Micromonosporaceae,
genus Plantomyces, and genus Nitrospira in the
most complex module (ME9) and genus Rhizobium in ME23.
This research would help to further identify a way to increase
soybean yield in low-yield states in the U.S. as well as worldwide
by reconstructing the microbial communities in the
rhizosphere.