Warning: mkdir(): Permission denied in /home/virtual/lib/view_data.php on line 81

Warning: fopen(upload/ip_log/ip_log_2024-09.txt): failed to open stream: No such file or directory in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
Functional Characterization of DNA N‑Glycosylase Ogg1 and Ntg1 in DNA Damage Stress of Cryptococcus neoformans
Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Articles

Page Path
HOME > J. Microbiol > Volume 61(11); 2023 > Article
Journal Article
Functional Characterization of DNA N‑Glycosylase Ogg1 and Ntg1 in DNA Damage Stress of Cryptococcus neoformans
Kwang-Woo Jung 1, Sunhak Kwon 1,2, Jong-Hyun Jung 1, Sangyong Lim 1,3, Yong-Sun Bahn 2
Journal of Microbiology 2023;61(11):981-992
DOI: https://doi.org/10.1007/s12275-023-00092-y
Published online: December 6, 2023
1Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea, 2Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea, 3Department of Radiation Science, University of Science and Technology, Daejeon 34113, Republic of Korea1Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea, 2Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea, 3Department of Radiation Science, University of Science and Technology, Daejeon 34113, Republic of Korea
Corresponding author:  Kwang-Woo Jung ,
Received: 5 October 2023   • Accepted: 31 October 2023
prev next
  • 2 Views
  • 0 Download
  • 0 Crossref
  • 0 Scopus

Reactive oxygen species induce DNA strand breaks and DNA oxidation. DNA oxidation leads to DNA mismatches, resulting in mutations in the genome if not properly repaired. Homologous recombination (HR) and non-homologous end-joining (NHEJ) are required for DNA strand breaks, whereas the base excision repair system mainly repairs oxidized DNAs, such as 8-oxoguanine and thymine glycol, by cleaving the glycosidic bond, inserting correct nucleotides, and sealing the gap. Our previous studies revealed that the Rad53-Bdr1 pathway mainly controls DNA strand breaks through the regulation of HRand NHEJ-related genes. However, the functional roles of genes involved in the base excision repair system remain elusive in Cryptococcus neoformans. In the present study, we identified OGG1 and NTG1 genes in the base excision repair system of C. neoformans, which are involved in DNA oxidation repair. The expression of OGG1 was induced in a Hog1-dependent manner under oxidative stress. On the other hand, the expression of NTG1 was strongly induced by DNA damage stress in a Rad53-independent manner. We demonstrated that the deletion of NTG1, but not OGG1, resulted in elevated susceptibility to DNA damage agents and oxidative stress inducers. Notably, the ntg1Δ mutant showed growth defects upon antifungal drug treatment. Although deletion of OGG1 or NTG1 did not increase mutation rates, the mutation profile of each ogg1Δ and ntg1Δ mutant was different from that of the wild-type strain. Taken together, we found that DNA N-glycosylase Ntg1 is required for oxidative DNA damage stress and antifungal drug resistance in C. neoformans.

  • Cite this Article
    Cite this Article
    export Copy Download
    Close
    Download Citation
    Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

    Format:
    • RIS — For EndNote, ProCite, RefWorks, and most other reference management software
    • BibTeX — For JabRef, BibDesk, and other BibTeX-specific software
    Include:
    • Citation for the content below
    Functional Characterization of DNA N‑Glycosylase Ogg1 and Ntg1 in DNA Damage Stress of Cryptococcus neoformans
    J. Microbiol. 2023;61(11):981-992.   Published online December 6, 2023
    Close
Related articles

Journal of Microbiology : Journal of Microbiology
TOP