Warning: mkdir(): Permission denied in /home/virtual/lib/view_data.php on line 81

Warning: fopen(upload/ip_log/ip_log_2024-11.txt): failed to open stream: No such file or directory in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
Biosynthesis of Chryseno[2,1,c]oxepin‑12‑Carboxylic Acid from Glycyrrhizic Acid in Aspergillus terreus TMZ05‑2, and Analysis of Its Anti‑inflammatory Activity
Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Articles

Page Path
HOME > J. Microbiol > Volume 62(2); 2024 > Article
Journal Article
Biosynthesis of Chryseno[2,1,c]oxepin‑12‑Carboxylic Acid from Glycyrrhizic Acid in Aspergillus terreus TMZ05‑2, and Analysis of Its Anti‑inflammatory Activity
Liangliang Chen , Lin Zhao , Ju Han , Ping Xiao , Mingzhe Zhao , Sen Zhang , Jinao Duan
Journal of Microbiology 2024;62(2):113-124
DOI: https://doi.org/10.1007/s12275-024-00105-4
Published online: February 27, 2024
Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, People’s Republic of ChinaJiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, People’s Republic of China
Corresponding author:  Ping Xiao ,
Sen Zhang ,
Received: 10 October 2023   • Revised: 26 December 2023   • Accepted: 1 January 2024
prev next
  • 21 Views
  • 0 Download
  • 0 Crossref
  • 0 Scopus

Glycyrrhizic acid, glycyrrhetinic acid, and their oxo, ester, lactone, and other derivatives, are known for their anti-inflammatory, anti-oxidant, and hypoglycemic pharmacological activities. In this study, chryseno[2,1-c]oxepin-12-carboxylic acid (MG) was first biosynthesized from glycyrrhizic acid through sequential hydrolysis, oxidation, and esterification using Aspergillus terreus TMZ05-2, providing a novel in vitro biosynthetic pathway for glycyrrhizic acid derivatives. Assessing the influence of fermentation conditions and variation of strains during culture under stress-induction strategies enhanced the final molar yield to 88.3% (5 g/L glycyrrhizic acid). CCK8 assays showed no cytotoxicity and good cell proliferation, and anti-inflammatory experiments demonstrated strong inhibition of NO release (36.3%, low-dose MG vs. model), transcriptional downregulation of classical effective cellular factors tumor necrosis factor-α (TNF-α; 72.2%, low-dose MG vs. model), interleukin-6 (IL-6; 58.3%, low-dose MG vs. model) and interleukin-1β (IL-1β; 76.4%, low-dose MG vs. model), and decreased abundance of P-IKK-α, P-IKB-α, and P-P65 proteins, thereby alleviating inflammatory responses through the NF-κB pathway in LPS-induced RAW264.7 cells. The findings provide a reference for the biosynthesis of lactone compounds from medicinal plants.

  • Cite this Article
    Cite this Article
    export Copy Download
    Close
    Download Citation
    Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

    Format:
    • RIS — For EndNote, ProCite, RefWorks, and most other reference management software
    • BibTeX — For JabRef, BibDesk, and other BibTeX-specific software
    Include:
    • Citation for the content below
    Biosynthesis of Chryseno[2,1,c]oxepin‑12‑Carboxylic Acid from Glycyrrhizic Acid in Aspergillus terreus TMZ05‑2, and Analysis of Its Anti‑inflammatory Activity
    J. Microbiol. 2024;62(2):113-124.   Published online February 27, 2024
    Close
Related articles

Journal of Microbiology : Journal of Microbiology
TOP