Vibrio vulnificus, a Gram-negative bacterium found in estuarine waters, is responsible for over 95% of all seafood-related deaths in the United States. As a result of a temperature downshift to 5^oC, this organism enters the viable but nonculturable (VBNC) state. Changes in the membrane fatty acid (FA) composition of V. vulnificus may be a contributing factor to the ability of this organism to enter into and survive in the VBNC state. This hypothesis was tested by incubating the organism at 5^oC in artificial sea water and analyzing the cells’ FAs during the initial hours of temperature and nutrient downshift. Prior to downshift, the predominant FAs were 16:0, 16:1 and 18:0. During the first four hours of downshift, statistically significant changes occurred in 15:0, 16:1, 16:0, 17:0, and 18:0. These results indicate that changes in FA composition occur prior to entry of V. vulnificus into the VBNC state, suggesting that the ability to maintain membrane fluidity may be a factor in this physiological response. Cells in which fatty acid synthesis was inhibited did not survive, indicating that active fatty acid metabolism is essential for entry of cells into the VBNC state.