The purpose of this study was to investigate the prevalence and genetic mechanisms of erythromycin resistance in staphylococci. A total of 102 erythromycin resistant non-duplicate clinical isolates of staphylococci [78 coagulase negative stapylococci (CNS), 24 Staphylococcus aureus] were collected between October 2003 and August 2004 in Istanbul Faculty of Medicine in Turkey. The majority of the isolates were from blood and urine specimens. Antimicrobial susceptibilities were determined by the agar dilution procedure and the resistance phenotypes by the double disk induction test. A multiplex PCR was performed, using primers specific for erm(A), erm(B), erm(C), and msrA genes. Among the 78 CNS isolates, 57.8% expressed the MLSB-constitutive, 20.6% the MLSB-inducible, and 21.6% the MSB phenotypes. By PCR, 78.2% of these isolates harbored the erm(C) gene, 8.9% erm(A), 6.4% erm(B), and 11.5% msrA genes. In S. aureus, the constitutive MLSB (58.3%) was more common than the inducible phenotype (20.8%). erm(A) was detected in 50% and erm(C) in 62.5% of the isolates, while 37.5% contained both erm(A) and erm(C). erm(C)-associated macrolide resistance was the most prevalent in CNS, while erm(C) and erm(A, C) was the most prevalent in S. aureus.