Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Previous issues

Page Path
HOME > Browse Articles > Previous issues
10 Previous issues
Filter
Filter
Article category
Keywords
Volume 55(11); November 2017
Prev issue Next issue
Review
[Minireview] Antibiotic resistance of pathogenic Acinetobacter species and emerging combination therapy
Bora Shin , Woojun Park
J. Microbiol. 2017;55(11):837-849.   Published online October 27, 2017
DOI: https://doi.org/10.1007/s12275-017-7288-4
  • 50 View
  • 0 Download
  • 38 Crossref
AbstractAbstract
The increasing antibiotic resistance of Acinetobacter species in both natural and hospital environments has become a serious problem worldwide in recent decades. Because of both intrinsic and acquired antimicrobial resistance (AMR) against last-resort antibiotics such as carbapenems, novel therapeutics are urgently required to treat Acinetobacter-associated infectious diseases. Among the many pathogenic Acinetobacter species, A. baumannii has been reported to be resistant to all classes of antibiotics and contains many AMR genes, such as blaADC (Acinetobacter-derived cephalosporinase). The AMR of pathogenic Acinetobacter species is the result of several different mechanisms, including active efflux pumps, mutations in antibiotic targets, antibiotic modification, and low antibiotic membrane permeability. To overcome the limitations of existing drugs, combination theraphy that can increase the activity of antibiotics should be considered in the treatment of Acinetobacter infections. Understanding the molecular mechanisms behind Acinetobacter AMR resistance will provide vital information for drug development and therapeutic strategies using combination treatment. Here, we summarize the classic mechanisms of Acinetobacter AMR, along with newly-discovered genetic AMR factors and currently available antimicrobial adjuvants that can enhance drug efficacy in the treatment of A. baumannii infections.

Citations

Citations to this article as recorded by  
  • Disruption of bacterial interactions and community assembly in Babesia-infected Haemaphysalis longicornis following antibiotic treatment
    Myriam Kratou, Apolline Maitre, Lianet Abuin-Denis, Elianne Piloto-Sardiñas, Ivan Corona-Guerrero, Ana Laura Cano-Argüelles, Alejandra Wu-Chuang, Timothy Bamgbose, Consuelo Almazan, Juan Mosqueda, Dasiel Obregón, Lourdes Mateos-Hernández, Mourad Ben Said,
    BMC Microbiology.2024;[Epub]     CrossRef
  • A 19-year longitudinal study to characterize carbapenem-nonsusceptible Acinetobacter isolated from patients with bloodstream infections and the contribution of conjugative plasmids to carbapenem resistance and virulence
    Pek Kee Chen, Yi-Tzu Lee, Chia-Ying Liu, Tran Thi Dieu Thuy, Kieu Anh, Jiunn-Jong Wu, Chun-Hsing Liao, Yu-Tsung Huang, Yu-Chen Chen, Cheng-Yen Kao
    Journal of Microbiology, Immunology and Infection.2024; 57(2): 288.     CrossRef
  • MOLECULAR ANALYSIS OF THE MCR-1 GENE IN PSEUDOMONAS AERUGINOSA AND ACINETOBACTER BAUMANII STRAINS
    Ömer Akgül
    Ankara Universitesi Eczacilik Fakultesi Dergisi.2024; 48(3): 21.     CrossRef
  • Effect of Phenylalanine–Arginine Beta-Naphthylamide on the Values of Minimum Inhibitory Concentration of Quinolones and Aminoglycosides in Clinical Isolates of Acinetobacter baumannii
    Stefany Plasencia-Rebata, Saul Levy-Blitchtein, Juana del Valle-Mendoza, Wilmer Silva-Caso, Isaac Peña-Tuesta, William Vicente Taboada, Fernando Barreda Bolaños, Miguel Angel Aguilar-Luis
    Antibiotics.2023; 12(6): 1071.     CrossRef
  • A comprehensive genomic analysis provides insights on the high environmental adaptability of Acinetobacter strains
    Yang Zhao, Hua-Mei Wei, Jia-Li Yuan, Lian Xu, Ji-Quan Sun
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Acinetobacter baumannii in blood-borne and central nervous system infections in intensive care unit children: molecular and genetic characteristics and clinical significance
    Zulfirya Z. Sadeeva, Irina E. Novikova, Natalia M. Alyabyeva, Anna V. Lazareva, Tatiana M. Komyagina, Olga V. Karaseva, Marina G. Vershinina, Andrey P. Fisenko
    Russian Journal of Infection and Immunity.2023; 13(2): 289.     CrossRef
  • Herbal Products and Their Active Constituents Used Alone and in Combination with Antibiotics against Multidrug-Resistant Bacteria
    Anna Herman, Andrzej P. Herman
    Planta Medica.2023; 89(02): 168.     CrossRef
  • A Systematic Review of Culture-Based Methods for Monitoring Antibiotic-Resistant Acinetobacter, Aeromonas, and Pseudomonas as Environmentally Relevant Pathogens in Wastewater and Surface Water
    Erin G. Milligan, Jeanette Calarco, Benjamin C. Davis, Ishi M. Keenum, Krista Liguori, Amy Pruden, Valerie J. Harwood
    Current Environmental Health Reports.2023; 10(2): 154.     CrossRef
  • Gold nanoparticle-DNA aptamer-assisted delivery of antimicrobial peptide effectively inhibits Acinetobacter baumannii infection in mice
    Jaeyeong Park, Eunkyoung Shin, Ji-Hyun Yeom, Younkyung Choi, Minju Joo, Minho Lee, Je Hyeong Kim, Jeehyeon Bae, Kangseok Lee
    Journal of Microbiology.2022; 60(1): 128.     CrossRef
  • In vitro study to evaluate the antimicrobial activity of various multifunctional cosmetic ingredients and chlorphenesin on bacterial species at risk in the cosmetic industry
    Benjamin Youenou, Amandine Chauviat, Chrisse Ngari, Valérie Poulet, Sylvie Nazaret
    Journal of Applied Microbiology.2022; 132(2): 933.     CrossRef
  • Profiles of Microbial Community and Antibiotic Resistome in Wild Tick Species
    Nana Wei, Jinmiao Lu, Yi Dong, Shibo Li, Jack A. Gilbert
    mSystems.2022;[Epub]     CrossRef
  • Conventional and Real-Time PCR Targeting blaOXA Genes as Reliable Methods for a Rapid Detection of Carbapenem-Resistant Acinetobacter baumannii Clinical Strains
    Dagmara Depka, Agnieszka Mikucka, Tomasz Bogiel, Mateusz Rzepka, Patryk Zawadka, Eugenia Gospodarek-Komkowska
    Antibiotics.2022; 11(4): 455.     CrossRef
  • In vitro synergistic activity of colistin and teicoplanin combination against multidrug-resistant Acinetobacter spp
    Osama Mohamed Samy Mohamed Rady, Laila El-Attar, Amira Amine
    The Journal of Antibiotics.2022; 75(3): 181.     CrossRef
  • Biogenic silver nanoparticle (Bio‐AgNP) has an antibacterial effect against carbapenem‐resistant Acinetobacter baumannii with synergism and additivity when combined with polymyxin B
    Suzane Olachea Allend, Marcelle Oliveira Garcia, Kamila Furtado da Cunha, Déborah Trota Farias de Albernaz, Mirian Elert da Silva, Rodrigo Yudi Ishikame, Luciano Aparecido Panagio, Gerson Nakazaro, Guilherme Fonseca Reis, Daniela Brayer Pereira, Daiane Dr
    Journal of Applied Microbiology.2022; 132(2): 1036.     CrossRef
  • RapidResa Polymyxin Acinetobacter NP® Test for Rapid Detection of Polymyxin Resistance in Acinetobacter baumannii
    Maxime Bouvier, Mustafa Sadek, Stefano Pomponio, Fernando D’Emidio, Laurent Poirel, Patrice Nordmann
    Antibiotics.2021; 10(5): 558.     CrossRef
  • Rapid detection of carbapenemase-producing Pseudomonas spp. using the NitroSpeed-Carba NP test
    Mustafa Sadek, Laurent Poirel, Patrice Nordmann
    Diagnostic Microbiology and Infectious Disease.2021; 99(3): 115280.     CrossRef
  • Gain and loss of antibiotic resistant genes in multidrug resistant bacteria: One Health perspective
    Misung Kim, Jaeeun Park, Mingyeong Kang, Jihye Yang, Woojun Park
    Journal of Microbiology.2021; 59(6): 535.     CrossRef
  • OXA-23 and OXA-40 producing carbapenem-resistant Acinetobacter baumannii in Central Illinois
    Janak Koirala, Isha Tyagi, Lohitha Guntupalli, Sameena Koirala, Udita Chapagain, Christopher Quarshie, Sami Akram, Vidya Sundareshan, Sajan Koirala, Jerry Lawhorn, Yohei Doi, Michael Olson
    Diagnostic Microbiology and Infectious Disease.2020; 97(1): 114999.     CrossRef
  • Rapid Polymyxin/Pseudomonas NP test for rapid detection of polymyxin susceptibility/resistance in Pseudomonas aeruginosa
    Mustafa Sadek, Camille Tinguely, Laurent Poirel, Patrice Nordmann
    European Journal of Clinical Microbiology & Infectious Diseases.2020; 39(9): 1657.     CrossRef
  • Stress responses linked to antimicrobial resistance in Acinetobacter species
    Bora Shin, Chulwoo Park, Woojun Park
    Applied Microbiology and Biotechnology.2020; 104(4): 1423.     CrossRef
  • Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace
    Maria Soledad Ramirez, Robert A. Bonomo, Marcelo E. Tolmasky
    Biomolecules.2020; 10(5): 720.     CrossRef
  • Pharmacokinetics, Safety, and Tolerability of Intravenous Durlobactam and Sulbactam in Subjects with Renal Impairment and Healthy Matched Control Subjects
    John O’Donnell, Richard A. Preston, Grigor Mamikonyan, Emily Stone, Robin Isaacs
    Antimicrobial Agents and Chemotherapy.2019;[Epub]     CrossRef
  • Efficient Delivery of Antisense Oligonucleotides by an Amphipathic Cell-Penetrating Peptide in Acinetobacter baumannii
    Zhou Chen, Dan Nie, Yue Hu, Mingkai Li, Zheng Hou, Xinggang Mao, Xiaoxing Luo, Xiaoyan Xue
    Current Drug Delivery.2019; 16(8): 728.     CrossRef
  • Restoring the activity of the antibiotic aztreonam using the polyphenol epigallocatechin gallate (EGCG) against multidrug-resistant clinical isolates of Pseudomonas aeruginosa
    Jonathan W. Betts, Michael Hornsey, Paul G. Higgins, Kai Lucassen, Julia Wille, Francisco J. Salguero, Harald Seifert, Roberto M. La Ragione
    Journal of Medical Microbiology .2019; 68(10): 1552.     CrossRef
  • Antibiotic-resistant clones in Gram-negative pathogens: presence of global clones in Korea
    Kwan Soo Ko
    Journal of Microbiology.2019; 57(3): 195.     CrossRef
  • Alternative fate of glyoxylate during acetate and hexadecane metabolism in Acinetobacter oleivorans DR1
    Chulwoo Park, Bora Shin, Woojun Park
    Scientific Reports.2019;[Epub]     CrossRef
  • Nationwide surveillance of antimicrobial resistance among clinically important Gram-negative bacteria, with an emphasis on carbapenems and colistin: Results from the Surveillance of Multicenter Antimicrobial Resistance in Taiwan (SMART) in 2018
    Yu-Lin Lee, Min-Chi Lu, Pei-Lan Shao, Po-Liang Lu, Yen-Hsu Chen, Shu-Hsing Cheng, Wen-Chien Ko, Chi-Ying Lin, Ting-Shu Wu, Muh-Yong Yen, Lih-Shinn Wang, Chang-Pan Liu, Wen-Sen Lee, Zhi-Yuan Shi, Yao-Shen Chen, Fu-Der Wang, Shu-Hui Tseng, Chao-Nan Lin, Yu-
    International Journal of Antimicrobial Agents.2019; 54(3): 318.     CrossRef
  • The use of polymyxins to treat carbapenem resistant infections in neonates and children
    Reenu Thomas, Sithembiso Velaphi, Sally Ellis, A. Sarah Walker, Joseph F. Standing, Paul Heath, Mike Sharland, Daniele Dona’
    Expert Opinion on Pharmacotherapy.2019; 20(4): 415.     CrossRef
  • Plasmid-mediated mcr-1 gene in Acinetobacter baumannii and Pseudomonas aeruginosa: first report from Pakistan
    Fareeha Hameed, Muhammad Asif Khan, Hafsah Muhammad, Tahir Sarwar, Hazrat Bilal, Tayyab Ur Rehman
    Revista da Sociedade Brasileira de Medicina Tropical.2019;[Epub]     CrossRef
  • Identification of factors needed by a clinical isolate of Acinetobacter baumannii to resist antibacterial compounds
    Celena M. Gwin, Natalia Prakash, Nathan W. Rigel
    BIOS.2019; 90(3): 149.     CrossRef
  • A Resazurin Reduction-Based Assay for Rapid Detection of Polymyxin Resistance in Acinetobacter baumannii and Pseudomonas aeruginosa
    Mathilde Lescat, Laurent Poirel, Camille Tinguely, Patrice Nordmann, Nathan A. Ledeboer
    Journal of Clinical Microbiology.2019;[Epub]     CrossRef
  • Expansion of antibacterial spectrum of xanthorrhizol against Gram-negatives in combination with PMBN and food-grade antimicrobials
    Man Su Kim, Ha-Rim Kim, Haebom Kim, Soo-Keun Choi, Chang-Hwan Kim, Jae-Kwan Hwang, Seung-Hwan Park
    Journal of Microbiology.2019; 57(5): 405.     CrossRef
  • Carbapenem-resistant Acinetobacter baumannii in patients with burn injury: A systematic review and meta-analysis
    William Gustavo Lima, Geisa Cristina Silva Alves, Cristina Sanches, Simone Odília Antunes Fernandes, Magna Cristina de Paiva
    Burns.2019; 45(7): 1495.     CrossRef
  • Performances of the Rapid Polymyxin Acinetobacter and Pseudomonas Tests for Colistin Susceptibility Testing
    Mathilde Lescat, Laurent Poirel, Aurélie Jayol, Patrice Nordmann
    Microbial Drug Resistance.2019; 25(4): 520.     CrossRef
  • In vitro activities of ceftazidime/avibactam alone or in combination with antibiotics against multidrug-resistant Acinetobacter baumannii isolates
    Emel Mataracı Kara, Mesut Yılmaz, Berna Özbek Çelik
    Journal of Global Antimicrobial Resistance.2019; 17: 137.     CrossRef
  • Zoonotic Diseases and Phytochemical Medicines for Microbial Infections in Veterinary Science: Current State and Future Perspective
    Bora Shin, Woojun Park
    Frontiers in Veterinary Science.2018;[Epub]     CrossRef
  • A formidable foe: carbapenem-resistant Acinetobacter baumannii and emerging nonantibiotic therapies
    Richard R. Watkins
    Expert Review of Anti-infective Therapy.2018; 16(8): 591.     CrossRef
  • Plasma and Intrapulmonary Concentrations of ETX2514 and Sulbactam following Intravenous Administration of ETX2514SUL to Healthy Adult Subjects
    Keith A. Rodvold, Mark H. Gotfried, Robin D. Isaacs, John P. O'Donnell, Emily Stone
    Antimicrobial Agents and Chemotherapy.2018;[Epub]     CrossRef
Journal Articles
Spirosoma flavus sp. nov., a novel bacterium from soil of Jeju Island
Nabil Elderiny , Seung-Yeol Lee , Sangkyu Park , In-Kyu Kang , Myung Kyum Kim , Dae Sung Lee , Leonid N. Ten , Hee-Young Jung
J. Microbiol. 2017;55(11):850-855.   Published online October 27, 2017
DOI: https://doi.org/10.1007/s12275-017-7360-0
  • 44 View
  • 0 Download
  • 1 Crossref
AbstractAbstract
A novel, Gram-staining negative, yellow pigmented bacterial strain, designated 15J11-2T, was isolated from soil sample on Jeju Island, Republic of Korea. The strain was subjected to a taxonomic study using a polyphasic approach. The strain was able to grow at temperature range from 10°C to 30°C, pH 7–8, and in presence of 0–1% (w/v) NaCl. Comparative 16S rRNA gene sequence analysis showed that strain 15J11-2T belongs to the genus Spirosoma and levels of 16S rRNA gene sequence similarity ranged from 91.5% to 89.8%. The genomic DNA G + C content of strain 15J11-2T was 46.0 mol%. The isolate contained phosphatidylethanolamine and an unidentified aminophospholipid as the main polar lipids, menaquinone MK-7 as the predominant respiratory quinone, and summed feature 3 (C16:1 ω6c/C16:1 ω7c; 39.4%), C16:1 ω5c (27.1%), and C16:0 (13.0%) as the major fatty acids, which supported the affiliation of strain 15J11-2T to the genus Spirosoma. The results of physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 15J11-2T from recognized Spirosoma species. On the basis of its phenotypic properties, genotypic distinctiveness, chemotaxonomic features, strain 15J11-2T represents a novel species of the genus Spirosoma, for which the name Spirosoma flavus sp. nov. is proposed. The type strain is 15J11-2T (= KCTC 52026T = JCM 31998T).

Citations

Citations to this article as recorded by  
  • Spirosoma profusum sp. nov., and Spirosoma validum sp. nov., radiation-resistant bacteria isolated from soil in South Korea
    Yuna Park, Soohyun Maeng, Tuvshinzaya Damdintogtokh, Jing Zhang, Min-Kyu Kim, Sathiyaraj Srinivasan, Myung Kyum Kim
    Antonie van Leeuwenhoek.2021; 114(7): 1155.     CrossRef
Spirosoma lituiforme sp. nov., isolated from soil
Weilan Li , Seung-Yeol Lee , Sangkyu Park , Byung-Oh Kim , Leonid N. Ten , Hee-Young Jung
J. Microbiol. 2017;55(11):856-861.   Published online October 27, 2017
DOI: https://doi.org/10.1007/s12275-017-7255-0
  • 45 View
  • 0 Download
  • 4 Crossref
AbstractAbstract
A Gram-staining-negative, non-motile, curved rod-shaped, aerobic bacterium, designated S1-2-4T, was isolated from soil in Jeollabuk-do province, Republic of Korea, and was characterized taxonomically using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain S1-2-4T was a member of the family Cytophagaceae and most closely related to ‘Spirosoma radiotolerans’ DG5A (97.2%), Spirosoma fluviale MSd3T (96.4%), and Spirosoma linguale DSM 74T (96.3%). The genomic DNA G + C content of strain S1-2-4T was 49.7 mol%. The major fatty acids were summed feature 3 (C16:1 ω7c/C16:1 ω6c), C16:1 ω5c, and C16:0, and the major polar lipid was phosphatidylethanolamine. MK-7 was the predominant respiratory quinone. Phenotypic and chemotaxonomic data supported the affiliation of strain S1-2-4T with the genus Spirosoma. DNA-DNA hybridization between strain S1-2-4T and ‘Spirosoma radiotolerans’ showed relatively low DNA-DNA relatedness (31%). Strain S1-2-4T could be distinguished from its closest phylogenetic neighbors based on its phenotypic, genotypic, and chemotaxonomic features. Therefore, strain S1-2-4T represents a novel member of the genus Spirosoma, for which the name Spirosoma lituiforme sp. nov. is proposed. The type strain is S1- 2-4T (= KCTC 52724T = JCM 32128T).

Citations

Citations to this article as recorded by  
  • Spirosoma rhododendri sp. nov., isolated from a flower of royal azalea (Rhododendron schlippenbachii)
    Miyoung Won, Seung-Beom Hong, Byeong-Hak Han, Soon-Wo Kwon
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • Spirosoma sordidisoli sp. nov., a propanil-degrading bacterium isolated from a herbicide-contaminated soil
    Long Zhang, Xi-Yi Zhou, Xiao-Jing Su, Qiang Hu, Jian-Dong Jiang
    Antonie van Leeuwenhoek.2019; 112(10): 1523.     CrossRef
  • Spirosoma utsteinense sp. nov. isolated from Antarctic ice-free soils from the Utsteinen region, East Antarctica
    Guillaume Tahon, Liesbeth Lebbe, Anne Willems
    International Journal of Systematic and Evolutionary Microbiology .2019;[Epub]     CrossRef
  • List of new names and new combinations previously effectively, but not validly, published
    Aharon Oren, George M. Garrity
    International Journal of Systematic and Evolutionary Microbiology .2018; 68(3): 693.     CrossRef
Magnetite production and transformation in the methanogenic consortia from coastal riverine sediments
Shiling Zheng , Bingchen Wang , Fanghua Liu , Oumei Wang
J. Microbiol. 2017;55(11):862-870.   Published online October 27, 2017
DOI: https://doi.org/10.1007/s12275-017-7104-1
  • 56 View
  • 0 Download
  • 13 Crossref
AbstractAbstract
Minerals that contain ferric iron, such as amorphous Fe(III) oxides (A), can inhibit methanogenesis by competitively accepting electrons. In contrast, ferric iron reduced products, such as magnetite (M), can function as electrical conductors to stimulate methanogenesis, however, the processes and effects of magnetite production and transformation in the methanogenic consortia are not yet known. Here we compare the effects on methanogenesis of amorphous Fe (III) oxides (A) and magnetite (M) with ethanol as the electron donor. RNAbased terminal restriction fragment length polymorphism with a clone library was used to analyse both bacterial and archaeal communities. Iron (III)-reducing bacteria including Geobacteraceae and methanogens such as Methanosarcina were enriched in iron oxide-supplemented enrichment cultures for two generations with ethanol as the electron donor. The enrichment cultures with A and non-Fe (N) dominated by the active bacteria belong to Veillonellaceae, and archaea belong to Methanoregulaceae and Methanobacteriaceae, Methanosarcinaceae (Methanosarcina mazei), respectively. While the enrichment cultures with M, dominated by the archaea belong to Methanosarcinaceae (Methanosarcina barkeri). The
results
also showed that methanogenesis was accelerated in the transferred cultures with ethanol as the electron donor during magnetite production from A reduction. Powder X-ray diffraction analysis indicated that magnetite was generated from microbial reduction of A and M was transformed into siderite and vivianite with ethanol as the electron donor. Our data showed the processes and effects of magnetite production and transformation in the methanogenic consortia, suggesting that significantly different effects of iron minerals on microbial methanogenesis in the iron-rich coastal riverine environment were present.

Citations

Citations to this article as recorded by  
  • Processing pathways of organic matter under methanogenic conditions and its influence on arsenic mobilization in aquifers
    Xiaofang Yuan, Yamin Deng, Yao Du, Jiangkai Xue, Kunfu Pi, Yijun Yang, Yuxiao Xu, Xianjun Xie, Yanxin Wang
    Journal of Hydrology.2025; 647: 132367.     CrossRef
  • Fermentative iron reduction buffers acidification and promotes microbial metabolism in marine sediments
    Yuechao Zhang, Qinqin Hao, Oumei Wang, Xiao-Hua Zhang, Fanghua Liu
    Journal of Environmental Chemical Engineering.2023; 11(5): 110922.     CrossRef
  • Biogenic Fe Incorporation into Anaerobic Granular Sludge Assisted by Shewanella oneidensis MR-1 Enhanced Interspecies Electron Transfer and Methane Production
    Meihui Zhuo, Xiangchun Quan, Zhiqi Gao, Ruoyu Yin, Yanping Quan
    ACS Sustainable Chemistry & Engineering.2023; 11(7): 3001.     CrossRef
  • Assessing the enhanced reduction effect with the addition of sulfate based P inactivating material during algal bloom sedimentation
    Xin Liu, Xuan Sun, Rui Liu, Leilei Bai, Peixin Cui, Huacheng Xu, Changhui Wang
    Chemosphere.2022; 300: 134656.     CrossRef
  • Complete Genome Sequence of Methanobacterium electrotrophus Strain YSL, Isolated from Coastal Riverine Sediments
    Shiling Zheng, Fanghua Liu, Frank J. Stewart
    Microbiology Resource Announcements.2021;[Epub]     CrossRef
  • The differences in the corrosion product compositions of Methanogen-induced microbiologically influenced corrosion (Mi-MIC) between static and dynamic growth conditions
    Biwen Annie An, Eric Deland, Oded Sobol, Jizheng Yao, Torben Lund Skovhus, Andrea Koerdt
    Corrosion Science.2021; 180: 109179.     CrossRef
  • Organic matter stabilized Fe in drinking water treatment residue with implications for environmental remediation
    Changhui Wang, Zhanling Wang, Huacheng Xu, Leilei Bai, Cheng Liu, Helong Jiang, Peixin Cui
    Water Research.2021; 189: 116688.     CrossRef
  • Methanobacterium Capable of Direct Interspecies Electron Transfer
    Shiling Zheng, Fanghua Liu, Bingchen Wang, Yuechao Zhang, Derek R. Lovley
    Environmental Science & Technology.2020; 54(23): 15347.     CrossRef
  • Formation of Zerovalent Iron in Iron-Reducing Cultures of Methanosarcina barkeri
    Haitao Shang, Mirna Daye, Orit Sivan, Caue S. Borlina, Nobumichi Tamura, Benjamin P. Weiss, Tanja Bosak
    Environmental Science & Technology.2020; 54(12): 7354.     CrossRef
  • Tackling antibiotic inhibition in anaerobic digestion: The roles of Fe3+ and Fe3O4 on process performance and volatile fatty acids utilization pattern
    Fetra J. Andriamanohiarisoamanana, Ikko Ihara, Gen Yoshida, Kazutaka Umetsu
    Bioresource Technology Reports.2020; 11: 100460.     CrossRef
  • A potential contribution of a Fe(III)-rich red clay horizon to methane release: Biogenetic magnetite-mediated methanogenesis
    Leilei Xiao, Wenchao Wei, Min Luo, Hengduo Xu, Dawei Feng, Jiafeng Yu, Jiafang Huang, Fanghua Liu
    CATENA.2019; 181: 104081.     CrossRef
  • Methanogenic Activity and Microbial Community Structure in Response to Different Mineralization Pathways of Ferrihydrite in Paddy Soil
    Li Zhuang, Ziyang Tang, Zhen Yu, Jian Li, Jia Tang
    Frontiers in Earth Science.2019;[Epub]     CrossRef
  • A new insight into the strategy for methane production affected by conductive carbon cloth in wetland soil: Beneficial to acetoclastic methanogenesis instead of CO2 reduction
    Jiajia Li, Leilei Xiao, Shiling Zheng, Yuechao Zhang, Min Luo, Chuan Tong, Hengduo Xu, Yang Tan, Juan Liu, Oumei Wang, Fanghua Liu
    Science of The Total Environment.2018; 643: 1024.     CrossRef
De novo transcriptome assembly and characterization of the 10-hydroxycamptothecin-producing Xylaria sp. M71 following salicylic acid treatment
Xiaowei Ding , Kaihui Liu , Yonggui Zhang , Feihu Liu
J. Microbiol. 2017;55(11):871-876.   Published online October 27, 2017
DOI: https://doi.org/10.1007/s12275-017-7173-1
  • 46 View
  • 0 Download
  • 6 Crossref
AbstractAbstract
In the present study, we identified genes that are putatively involved in the production of fungal 10-hydroxycamptothecin via transcriptome sequencing and characterization of the Xylaria sp. M71 treated with salicylic acid (SA). A total of 60,664,200 raw reads were assembled into 26,044 unigenes. BLAST assigned 8,767 (33.7%) and 10,840 (41.6%) unigenes to 40 Gene Ontology (GO) annotations and 108 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. A total of 3,713 unigenes comprising 1,504 upregulated and 2,209 downregulated unigenes were found to be differentially expressed between SA-induced and control fungi. Based on the camptothecin biosynthesis pathway in plants, 13 functional genes of Xylaria sp. M71 were mapped to the mevalonate (MVA) pathway, suggesting that the fungal 10-hydroxycamptothecin is produced via the MVA pathway. In summary, analysis of the Xylaria sp. M71 transcriptome allowed the identification of unigenes that are putatively involved in 10-hydroxycamptothecin biosynthesis in fungi.

Citations

Citations to this article as recorded by  
  • The hidden treasures in endophytic fungi: a comprehensive review on the diversity of fungal bioactive metabolites, usual analytical methodologies, and applications
    Jefferson Brendon Almeida dos Reis, Adriana Sturion Lorenzi, Danilo Batista Pinho, Patrícia Cardoso Cortelo, Helson Mario Martins do Vale
    Archives of Microbiology.2024;[Epub]     CrossRef
  • Genomic and transcriptomic analysis of camptothecin producing novel fungal endophyte: Alternaria burnsii NCIM 1409
    Shakunthala Natarajan, Boas Pucker, Smita Srivastava
    Scientific Reports.2023;[Epub]     CrossRef
  • Plant probiotics – Endophytes pivotal to plant health
    Shiv Shanker Pandey, Rahul Jain, Priyanka Bhardwaj, Ankita Thakur, Manju Kumari, Shashi Bhushan, Sanjay Kumar
    Microbiological Research.2022; 263: 127148.     CrossRef
  • Using Next-Generation Sequencing Technology to Explore Genetic Pathways in Endophytic Fungi in the Syntheses of Plant Bioactive Metabolites
    Monika Bielecka, Bartosz Pencakowski, Rosario Nicoletti
    Agriculture.2022; 12(2): 187.     CrossRef
  • Microbial endophytes: application towards sustainable agriculture and food security
    Vagish Dwibedi, Santosh Kumar Rath, Mahavir Joshi, Rajinder Kaur, Gurleen Kaur, Davinder Singh, Gursharan Kaur, SukhminderJit Kaur
    Applied Microbiology and Biotechnology.2022; 106(17): 5359.     CrossRef
  • How and why do endophytes produce plant secondary metabolites?
    Sachin Naik, Ramanan Uma Shaanker, Gudasalamani Ravikanth, Selvadurai Dayanandan
    Symbiosis.2019; 78(3): 193.     CrossRef
Characterization of siderophore produced by Pseudomonas syringae BAF.1 and its inhibitory effects on spore germination and mycelium morphology of Fusarium oxysporum
Sumei Yu , Chunying Teng , Jinsong Liang , Tao Song , Liying Dong , Xin Bai , Yu Jin , Juanjuan Qu
J. Microbiol. 2017;55(11):877-884.   Published online October 27, 2017
DOI: https://doi.org/10.1007/s12275-017-7191-z
  • 43 View
  • 0 Download
  • 27 Crossref
AbstractAbstract
In this study, an antagonistic bacterium against Fusarium oxysporum was identified and designated as Pseudomonas syringae strain BAF.1 on the basis of 16S rDNA sequence analysis and physiological-biochemical characteristics. It produced catechol-species siderophore at a molecular weight of 488.59 Da and a maximum amount of 55.27 μg/ml with glucose as a carbon source and asparagine as a nitrogen source at a C/N ratio of 10:1, 30°C and pH 7. The siderophore exhibited prominent antagonistic activity against Fusarium oxysporum with a maximum inhibition rate of 95.24% and had also suppressive effects on other kinds of 11 phytopathogenic fungi in the absence of FeCl3·6H2O. Spore germination was completely inhibited by 50 μl of the siderophorecontaining solution, and the ultrastructures of mycelia and spores were also considerably suppressed by siderophore treatment as established by electron microscopy observation. These results indicate that the siderophore produced by Pseudomonas syringae BAF.1 could be potentially used for biocontrol of pathogenic Fusarium oxysporum.

Citations

Citations to this article as recorded by  
  • Phytochemical composition and antifungal effectiveness of Phoenix dactylifera L. rachis extracts
    Ahmed Abdelkhalek, Eman A. Abdelwahab, Saad F. Elalem, Abdulaziz A. Al-Askar, Przemysław Ł. Kowalczewski, Said Behiry
    Polish Journal of Chemical Technology.2024; 26(3): 76.     CrossRef
  • Unveiling the biocontrol potential of Pseudomonas syringae through seed biopriming against charcoal rot disease in maize
    Muhammad Jarrar Ahmed, Amna Shoaib
    Physiological and Molecular Plant Pathology.2024; 133: 102370.     CrossRef
  • Exploring the rhizosphere of perennial wheat: potential for plant growth promotion and biocontrol applications
    Gianluigi Giannelli, Lorenzo Del Vecchio, Martina Cirlini, Marco Gozzi, Laura Gazza, Gianni Galaverna, Silvia Potestio, Giovanna Visioli
    Scientific Reports.2024;[Epub]     CrossRef
  • Torilis arvensis ethanolic extract: Phytochemical analysis, antifungal efficacy, and cytotoxicity properties
    Abdallah Khalil, Eman A. Abdelwahab, Omaima A. Sharaf, Abdulaziz A. Al-Askar, Przemysław Kowalczewski, Ahmed Abdelkhalek, Said Behiry
    Open Chemistry.2024;[Epub]     CrossRef
  • Rapid and accurate detection of Fusarium oxysporum f. sp. Lycopersici using one-pot, one-step LAMP-CRISPR/Cas12b method
    Shijie Dai, Yangsheng Wu, Na Zhu, Yujin Zhao, Mingjiang Mao, Zheming Li, Bo Zhu, Weichun Zhao, Xiaofeng Yuan
    Frontiers in Plant Science.2024;[Epub]     CrossRef
  • Anticandidal Activity of a Siderophore from Marine Endophyte Pseudomonas aeruginosa Mgrv7
    Essam Kotb, Amira H. Al-Abdalall, Ibtisam Ababutain, Nada F. AlAhmady, Sahar Aldossary, Eida Alkhaldi, Azzah I. Alghamdi, Hind A. S. Alzahrani, Mashael A. Almuhawish, Moudhi N. Alshammary, Asmaa A. Ahmed
    Antibiotics.2024; 13(4): 347.     CrossRef
  • Siderophores and metallophores: Metal complexation weapons to fight environmental pollution
    Ana F.R. Gomes, Mariana C. Almeida, Emília Sousa, Diana I.S.P. Resende
    Science of The Total Environment.2024; 932: 173044.     CrossRef
  • Siderophore of plant growth promoting rhizobacterium origin reduces reactive oxygen species mediated injury in Solanum spp. caused by fungal pathogens
    Ravinsh Kumar, Ashutosh Singh, Ekta Shukla, Pratika Singh, Azmi Khan, Naveen Kumar Singh, Amrita Srivastava
    Journal of Applied Microbiology.2024;[Epub]     CrossRef
  • A Practical Toolkit for the Detection, Isolation, Quantification, and Characterization of Siderophores and Metallophores in Microorganisms
    Ana F. R. Gomes, Emília Sousa, Diana I. S. P. Resende
    ACS Omega.2024; 9(25): 26863.     CrossRef
  • Production and Antibacterial Activity of Atypical Siderophore from Pseudomonas sp. QCS59 Recovered from Harpachene schimperi
    Mashael A. Almuhawish, Essam Kotb, Eida Alkhaldi, Asmaa A. Ahmed
    Pharmaceuticals.2024; 17(9): 1126.     CrossRef
  • A comparative study of the antifungal efficacy and phytochemical composition of date palm leaflet extracts
    Karrar A. Hamzah, Abdulaziz Al-Askar, Przemysław Kowalczewski, Ahmed Abdelkhalek, Haitham H. Emaish, Said Behiry
    Open Chemistry.2024;[Epub]     CrossRef
  • HPLC and GC–MS analyses of phytochemical compounds in Haloxylon salicornicum extract: Antibacterial and antifungal activity assessment of phytopathogens
    Said Behiry, Eman A. Abdelwahab, Abdulaziz A. Al-Askar, Przemysław Kowalczewski, Ahmed Abdelkhalek
    Open Chemistry.2024;[Epub]     CrossRef
  • Antifungal Activity of Siderophore Isolated from Pantoea brenneri Against Fusarium oxysporum
    A. D. Suleimanova, L. V. Sokolnikova, E. A. Egorova, E. S. Berkutova, D. S. Pudova, I. V. Khilyas, M. R. Sharipova
    Russian Journal of Plant Physiology.2023;[Epub]     CrossRef
  • Suppression of tomato wilt by cell-free supernatants of Acinetobacter baumannii isolates from wild cacao from the Colombian Amazon
    Carolina Pisco-Ortiz, Adriana González-Almario, Liz Uribe-Gutiérrez, Mauricio Soto-Suárez, Carol V. Amaya-Gómez
    World Journal of Microbiology and Biotechnology.2023;[Epub]     CrossRef
  • Volatiles from Pseudomonas palleroniana Strain B-BH16-1 Suppress Aflatoxin Production and Growth of Aspergillus flavus on Coix lacryma-jobi during Storage
    Shihua Zhou, Qing-Song Yuan, Xiaoai Wang, Weike Jiang, Xiaohong Ou, Changgui Yang, Yanping Gao, Yanhong Wang, Lanping Guo, Luqi Huang, Tao Zhou
    Toxins.2023; 15(1): 77.     CrossRef
  • Evaluation of Bio-Friendly Formulations from Siderophore-Producing Fluorescent Pseudomonas as Biocontrol Agents for the Management of Soil-Borne Fungi, Fusarium oxysporum and Rhizoctonia solani
    Gaber Attia Abo-Zaid, Ahmed Salah Abdullah, Nadia Abdel-Mohsen Soliman, Ebaa Ebrahim El-Sharouny, Abdulaziz A. Al-Askar, Yiming Su, Ahmed Abdelkhalek, Soraya Abdel-Fattah Sabry
    Agriculture.2023; 13(7): 1418.     CrossRef
  • Application of Sophora alopecuroides organic fertilizer changes the rhizosphere microbial community structure of melon plants and increases the fruit sugar content
    Ling‐qi Hua, Sheng‐qiang Yang, Zhan‐feng Xia, Hong Zeng
    Journal of the Science of Food and Agriculture.2023; 103(1): 164.     CrossRef
  • Phyto-Beneficial Traits of Rhizosphere Bacteria: In Vitro Exploration of Plant Growth Promoting and Phytopathogen Biocontrol Ability of Selected Strains Isolated from Harsh Environments
    Gianluigi Giannelli, Franco Bisceglie, Giorgio Pelosi, Beatrice Bonati, Maura Cardarelli, Maria Luisa Antenozio, Francesca Degola, Giovanna Visioli
    Plants.2022; 11(2): 230.     CrossRef
  • Rahnella aquatilis JZ-GX1 alleviates iron deficiency chlorosis in Cinnamomum camphora by secreting desferrioxamine and reshaping the soil fungal community
    Wei-Liang Kong, Ya-Hui Wang, Lan-Xiang Lu, Pu-Sheng Li, Yu Zhang, Xiao-Qin Wu
    Frontiers in Plant Science.2022;[Epub]     CrossRef
  • The Biocontrol and Plant Growth-Promoting Properties of Streptomyces alfalfae XN-04 Revealed by Functional and Genomic Analysis
    Jing Chen, Lifang Hu, Na Chen, Ruimin Jia, Qing Ma, Yang Wang
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Characterization of Pseudomonas bacteria of Piper tuberculatum regarding the production of potentially bio-stimulating compounds for plant growth
    Danyllo Amaral de OLIVEIRA, Solange da Cunha FERREIRA, Daiany Larissa Ribeiro CARRERA, Cleyson Pantoja SERRÃO, Daihany Moraes CALLEGARI, Nicolle Louise Ferreira BARROS, Francinilson Meireles COELHO, Cláudia Regina Batista de SOUZA
    Acta Amazonica.2021; 51(1): 10.     CrossRef
  • Siderophore Production by Rhizosphere Biological Control Bacteria Brevibacillus brevis GZDF3 of Pinellia ternata and Its Antifungal Effects on Candida albicans
    Miao miao Sheng, Hua ke Jia, Gong you Zhang, Li na Zeng, Ting Ting Zhang, Yao hang Long, Jing Lan, Zu quan Hu, Zhu Zeng, Bing Wang, Hong mei Liu
    Journal of Microbiology and Biotechnology.2020; 30(5): 689.     CrossRef
  • Evaluation of mixing effect and shear stress of different impeller combinations on nemadectin fermentation
    Zejian Wang, Jiayun Xue, Huijie Sun, Mingxia Zhao, Yonghong Wang, Ju Chu, Yingping Zhuang
    Process Biochemistry.2020; 92: 120.     CrossRef
  • Forest Tree Associated Bacterial Diffusible and Volatile Organic Compounds against Various Phytopathogenic Fungi
    Wei-Liang Kong, Pu-Sheng Li, Xiao-Qin Wu, Tian-Yu Wu, Xiao-Rui Sun
    Microorganisms.2020; 8(4): 590.     CrossRef
  • Volcanic ash inputs enhance the deep-sea seabed metal-biogeochemical cycle: A case study in the Yap Trench, western Pacific Ocean
    Ling Li, Shijie Bai, Jiwei Li, Shiming Wang, Limei Tang, Shamik Dasgupta, Yongjie Tang, Xiaotong Peng
    Marine Geology.2020; 430: 106340.     CrossRef
  • Maximization of Siderophores Production from Biocontrol Agents, Pseudomonas aeruginosa F2 and Pseudomonas fluorescens JY3 Using Batch and Exponential Fed-Batch Fermentation
    Gaber Attia Abo-Zaid, Nadia Abdel-Mohsen Soliman, Ahmed Salah Abdullah, Ebaa Ebrahim El-Sharouny, Saleh Mohamed Matar, Soraya Abdel-Fattah Sabry
    Processes.2020; 8(4): 455.     CrossRef
  • Postharvest biocontrol of Colletotrichum gloeosporioides on mango using the marine bacterium Stenotrophomonas rhizophila and its possible mechanisms of action
    J. J. Reyes-Perez, L. G. Hernandez-Montiel, S. Vero, J. C. Noa-Carrazana, E. E. Quiñones-Aguilar, G. Rincón-Enríquez
    Journal of Food Science and Technology.2019; 56(11): 4992.     CrossRef
The NADPH oxidase AoNoxA in Arthrobotrys oligospora functions as an initial factor in the infection of Caenorhabditis elegans
Xin Li , Ying-Qian Kang , Yan-Lu Luo , Ke-Qin Zhang , Cheng-Gang Zou , Lian-Ming Liang
J. Microbiol. 2017;55(11):885-891.   Published online October 27, 2017
DOI: https://doi.org/10.1007/s12275-017-7169-x
  • 47 View
  • 0 Download
  • 15 Crossref
AbstractAbstract
Reactive oxygen species (ROS) produced by NADPH oxidases can serve as signaling molecules to regulate a variety of physiological processes in multi-cellular organisms. In the nematophagous fungus Arthrobotrys oligospora, we found that ROS were produced during conidial germination, hyphal extension, and trap formation in the presence of nematodes. Generation of an AoNoxA knockout strain demonstrated the crucial role of NADPH oxidase in the production of ROS in A. oligospora, with trap formation impaired in the AoNoxA mutant, even in the presence of the nematode host. In addition, the expression of virulence factor serine protease P186 was up-regulated in the wild-type strain, but not in the mutant strain, in the presence of Caenorhabditis elegans. These results indicate that ROS derived from AoNoxA are essential for full virulence of A. oligospora in nematodes.

Citations

Citations to this article as recorded by  
  • AoPrdx2 Regulates Oxidative Stress, Reactive Oxygen Species, Trap Formation, and Secondary Metabolism in Arthrobotrys oligospora
    Na Zhao, Meichen Zhu, Qianqian Liu, Yanmei Shen, Shipeng Duan, Lirong Zhu, Jinkui Yang
    Journal of Fungi.2024; 10(2): 110.     CrossRef
  • Tools and basic procedures of gene manipulation in nematode-trapping fungi
    Shunxian Wang, Xingzhong Liu
    Mycology.2023; 14(2): 75.     CrossRef
  • Caenorhabditis elegansLIN‐24, a homolog of bacterial pore‐forming toxin, protects the host from microbial infection
    Huijie Zhang, Weirong Zeng, Ming‐Ming Zhao, Jiali Wang, Qiquan Wang, Ting Chen, Yuyan Zhang, Wenhui Lee, Shenghan Chen, Yun Zhang, Xinqiang Lan, Yang Xiang
    The FASEB Journal.2023;[Epub]     CrossRef
  • Key processes required for the different stages of fungal carnivory by a nematode-trapping fungus
    Hung-Che Lin, Guillermo Vidal-Diez de Ulzurrun, Sheng-An Chen, Ching-Ting Yang, Rebecca J. Tay, Tomoyo Iizuka, Tsung-Yu Huang, Chih-Yen Kuo, A. Pedro Gonçalves, Siou-Ying Lin, Yu-Chu Chang, Jason E. Stajich, Erich M. Schwarz, Yen-Ping Hsueh, Aaron P. Mitc
    PLOS Biology.2023; 21(11): e3002400.     CrossRef
  • Recent Advances in Life History Transition with Nematode-Trapping Fungus Arthrobotrys oligospora and Its Application in Sustainable Agriculture
    Da Wang, Nan Ma, Wanqin Rao, Ying Zhang
    Pathogens.2023; 12(3): 367.     CrossRef
  • Aolatg1 and Aolatg13 Regulate Autophagy and Play Different Roles in Conidiation, Trap Formation, and Pathogenicity in the Nematode-Trapping Fungus Arthrobotrys oligospora
    Duanxu Zhou, Yingmei Zhu, Na Bai, Meihua Xie, Ke-Qin Zhang, Jinkui Yang
    Frontiers in Cellular and Infection Microbiology.2022;[Epub]     CrossRef
  • Regulatory Mechanism of Trap Formation in the Nematode-Trapping Fungi
    Mei-Chen Zhu, Xue-Mei Li, Na Zhao, Le Yang, Ke-Qin Zhang, Jin-Kui Yang
    Journal of Fungi.2022; 8(4): 406.     CrossRef
  • Transcriptomic Analysis Reveals That Rho GTPases Regulate Trap Development and Lifestyle Transition of the Nematode-Trapping Fungus Arthrobotrys oligospora
    Le Yang, Xuemei Li, Na Bai, Xuewei Yang, Ke-Qin Zhang, Jinkui Yang, Christina A. Cuomo
    Microbiology Spectrum.2022;[Epub]     CrossRef
  • Prey sensing and response in a nematode-trapping fungus is governed by the MAPK pheromone response pathway
    Sheng-An Chen, Hung-Che Lin, Frank C Schroeder, Yen-Ping Hsueh, A Gladfelter
    Genetics.2021;[Epub]     CrossRef
  • Forward genetic screens identified mutants with defects in trap morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora
    Tsung-Yu Huang, Yi-Yun Lee, Guillermo Vidal-Diez de Ulzurrun, Yen-Ping Hsueh, J Dunlap
    G3 Genes|Genomes|Genetics.2021;[Epub]     CrossRef
  • The NADPH Oxidase A of Verticillium dahliae Is Essential for Pathogenicity, Normal Development, and Stress Tolerance, and It Interacts with Yap1 to Regulate Redox Homeostasis
    Vasileios Vangalis, Ioannis A. Papaioannou, Emmanouil A. Markakis, Michael Knop, Milton A. Typas
    Journal of Fungi.2021; 7(9): 740.     CrossRef
  • DdaSTE12 is involved in trap formation, ring inflation, conidiation, and vegetative growth in the nematode-trapping fungus Drechslerella dactyloides
    Yani Fan, Weiwei Zhang, Yue Chen, Meichun Xiang, Xingzhong Liu
    Applied Microbiology and Biotechnology.2021; 105(19): 7379.     CrossRef
  • Azaphilones biosynthesis complements the defence mechanism of Trichoderma guizhouense against oxidative stress
    Guan Pang, Tingting Sun, Zhenzhong Yu, Tao Yuan, Wei Liu, Hong Zhu, Qi Gao, Dongqing Yang, Christian P. Kubicek, Jian Zhang, Qirong Shen
    Environmental Microbiology.2020; 22(11): 4808.     CrossRef
  • Natural diversity in the predatory behavior facilitates the establishment of a robust model strain for nematode-trapping fungi
    Ching-Ting Yang, Guillermo Vidal-Diez de Ulzurrun, A. Pedro Gonçalves, Hung-Che Lin, Ching-Wen Chang, Tsung-Yu Huang, Sheng-An Chen, Cheng-Kuo Lai, Isheng J. Tsai, Frank C. Schroeder, Jason E. Stajich, Yen-Ping Hsueh
    Proceedings of the National Academy of Sciences.2020; 117(12): 6762.     CrossRef
  • Guttation capsules containing hydrogen peroxide: an evolutionarily conserved NADPH oxidase gains a role in wars between related fungi
    Jian Zhang, Youzhi Miao, Mohammad Javad Rahimi, Hong Zhu, Andrei Steindorff, Sabine Schiessler, Feng Cai, Guan Pang, Komal Chenthamara, Yu Xu, Christian P. Kubicek, Qirong Shen, Irina S. Druzhinina
    Environmental Microbiology.2019; 21(8): 2644.     CrossRef
Bile salt hydrolase-mediated inhibitory effect of Bacteroides ovatus on growth of Clostridium difficile
Soobin Yoon , Junsun Yu , Andrea McDowell , Sung Ho Kim , Hyun Ju You , GwangPyo Ko
J. Microbiol. 2017;55(11):892-899.   Published online October 27, 2017
DOI: https://doi.org/10.1007/s12275-017-7340-4
  • 44 View
  • 0 Download
  • 28 Crossref
AbstractAbstract
Clostridium difficile infection (CDI) is one of the most common nosocomial infections. Dysbiosis of the gut microbiota due to consumption of antibiotics is a major contributor to CDI. Recently, fecal microbiota transplantation (FMT) has been applied to treat CDI. However, FMT has important limitations including uncontrolled exposure to pathogens and standardization issues. Therefore, it is necessary to evaluate alternative treatment methods, such as bacteriotherapy, as well as the mechanism through which beneficial bacteria inhibit the growth of C. difficile. Here, we report bile acid-mediated inhibition of C. difficile by Bacteroides strains which can produce bile salt hydrolase (BSH). Bacteroides strains are not commonly used to treat CDI; however, as they comprise a large proportion of the intestinal microbiota, they can contribute to bile acid-mediated inhibition of C. difficile. The inhibitory effect on C. difficile growth increased with increasing bile acid concentration in the presence of Bacteroides ovatus SNUG 40239. Furthermore, this inhibitory effect on C. difficile growth was significantly attenuated when bile acid availability was reduced by cholestyramine, a bile acid sequestrant. The findings of this study are important due to the discovery of a new bacterial strain that in the presence of available bile acids inhibits growth of C. difficile. These
results
will facilitate development of novel bacteriotherapy strategies to control CDI.

Citations

Citations to this article as recorded by  
  • Interplay between Bile Acids and Intestinal Microbiota: Regulatory Mechanisms and Therapeutic Potential for Infections
    Wenweiran Li, Hui Chen, Jianguo Tang
    Pathogens.2024; 13(8): 702.     CrossRef
  • Rational Design of Live Biotherapeutic Products for the Prevention of Clostridioides difficile Infection
    Shanlin Ke, Javier A Villafuerte Gálvez, Zheng Sun, Yangchun Cao, Nira R Pollock, Xinhua Chen, Ciarán P Kelly, Yang-Yu Liu
    The Journal of Infectious Diseases.2024;[Epub]     CrossRef
  • Biofilm Formation of Clostridioides difficile, Toxin Production and Alternatives to Conventional Antibiotics in the Treatment of CDI
    Leon M. T. Dicks
    Microorganisms.2023; 11(9): 2161.     CrossRef
  • Bile Salt Hydrolases with Extended Substrate Specificity Confer a High Level of Resistance to Bile Toxicity on Atopobiaceae Bacteria
    Kana Morinaga, Hiroyuki Kusada, Hideyuki Tamaki
    International Journal of Molecular Sciences.2022; 23(18): 10980.     CrossRef
  • Impact of Fecal Microbiota Transplantation on Gut Bacterial Bile Acid Metabolism in Humans
    Jessica-Miranda Bustamante, Tyson Dawson, Caitlin Loeffler, Zara Marfori, Julian R. Marchesi, Benjamin H. Mullish, Christopher C. Thompson, Keith A. Crandall, Ali Rahnavard, Jessica R. Allegretti, Bethany P. Cummings
    Nutrients.2022; 14(24): 5200.     CrossRef
  • Distinct Changes in Microbiota-Mediated Intestinal Metabolites and Immune Responses Induced by Different Antibiotics
    Sunghyun Yoon, Giljae Lee, Junsun Yu, Kiuk Lee, Kyeongju Lee, Jiyeon Si, Hyun Ju You, GwangPyo Ko
    Antibiotics.2022; 11(12): 1762.     CrossRef
  • Bile Salt Hydrolases: At the Crossroads of Microbiota and Human Health
    Mélanie Bourgin, Aicha Kriaa, Héla Mkaouar, Vincent Mariaule, Amin Jablaoui, Emmanuelle Maguin, Moez Rhimi
    Microorganisms.2021; 9(6): 1122.     CrossRef
  • A strain of Bacteroides thetaiotaomicron attenuates colonization of Clostridioides difficile and affects intestinal microbiota and bile acids profile in a mouse model
    Xianping Li, Ying Kang, Yuanming Huang, Yuchun Xiao, Liqiong Song, Shan Lu, Zhihong Ren
    Biomedicine & Pharmacotherapy.2021; 137: 111290.     CrossRef
  • The effect of Tauroursodeoxycholic acid (TUDCA) and gut microbiota on murine gallbladder stone formation
    Qifan Lu, Zhaoyan Jiang, Qihan Wang, Hai Hu, Gang Zhao
    Annals of Hepatology.2021; 23: 100289.     CrossRef
  • Effects of simulated digestion on black chokeberry (Aronia melanocarpa (Michx.) Elliot) anthocyanins and intestinal flora
    Wenchen Yu, Jun Gao, Ruobing Hao, Jing Yang, Jie Wei
    Journal of Food Science and Technology.2021; 58(4): 1511.     CrossRef
  • Pain, Motivation, Migraine, and the Microbiome: New Frontiers for Opioid Systems and Disease
    Kyle E. Parker, Elizabeth Sugiarto, Anna M.W. Taylor, Amynah A. Pradhan, Ream Al-Hasani
    Molecular Pharmacology.2020; 98(4): 433.     CrossRef
  • Bile salt metabolism is not the only factor contributing toClostridioides(Clostridium)difficiledisease severity in the murine model of disease
    Caitlin A. Jukes, Umer Zeeshan Ijaz, Anthony Buckley, Janice Spencer, June Irvine, Denise Candlish, Jia V. Li, Julian R. Marchesi, Gillian Douce
    Gut Microbes.2020; 11(3): 481.     CrossRef
  • Recent Advancements in the Development of Modern Probiotics for Restoring Human Gut Microbiome Dysbiosis
    Roshan Kumar, Utkarsh Sood, Vipin Gupta, Mona Singh, Joy Scaria, Rup Lal
    Indian Journal of Microbiology.2020; 60(1): 12.     CrossRef
  • Fecal Microbiota Transplantation for Chronic Liver Diseases: Current Understanding and Future Direction
    Sarah Lechner, Matthew Yee, Berkeley N. Limketkai, Edward A. Pham
    Digestive Diseases and Sciences.2020; 65(3): 897.     CrossRef
  • Bile salt hydrolase activity, growth characteristics and surface properties in Lactobacillus acidophilus
    Sarka Horackova, Kristina Vesela, Iveta Klojdova, Marketa Bercikova, Milada Plockova
    European Food Research and Technology.2020; 246(8): 1627.     CrossRef
  • The triterpenoid sapogenin (2α-OH-Protopanoxadiol) ameliorates metabolic syndrome via the intestinal FXR/GLP-1 axis through gut microbiota remodelling
    Zhifu Xie, Haowen Jiang, Wei Liu, Xinwen Zhang, Dakai Chen, Shuimei Sun, Chendong Zhou, Jia Liu, Sheng Bao, Xiachang Wang, Yinan Zhang, Jia Li, Lihong Hu, Jingya Li
    Cell Death & Disease.2020;[Epub]     CrossRef
  • Effect of lotus seed resistant starch on tolerance of mice fecal microbiota to bile salt
    Suzhen Lei, Xin Li, Lu Liu, Mingjing Zheng, Qing Chang, Yi Zhang, Hongliang Zeng
    International Journal of Biological Macromolecules.2020; 151: 384.     CrossRef
  • Ultrapotent Inhibitor of Clostridioides difficile Growth, Which Suppresses Recurrence In Vivo
    George A. Naclerio, Nader S. Abutaleb, Daoyi Li, Mohamed N. Seleem, Herman O. Sintim
    Journal of Medicinal Chemistry.2020; 63(20): 11934.     CrossRef
  • Bile salt hydrolases: Gatekeepers of bile acid metabolism and host-microbiome crosstalk in the gastrointestinal tract
    Matthew H. Foley, Sarah O’Flaherty, Rodolphe Barrangou, Casey M. Theriot, Laura J. Knoll
    PLOS Pathogens.2019; 15(3): e1007581.     CrossRef
  • Probing Clostridium difficile Infection in Complex Human Gut Cellular Models
    Blessing O. Anonye, Jack Hassall, Jamie Patient, Usanee Detamornrat, Afnan M. Aladdad, Stephanie Schüller, Felicity R. A. J. Rose, Meera Unnikrishnan
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • Association of gut dysbiosis with intestinal metabolites in response to antibiotic treatment
    Tariq Jamal Khan, Mohammed Nihal Hasan, Esam I. Azhar, Muhammad Yasir
    Human Microbiome Journal.2019; 11: 100054.     CrossRef
  • Differential View on the Bile Acid Stress Response of Clostridioides difficile
    Susanne Sievers, Nicole G. Metzendorf, Silvia Dittmann, Daniel Troitzsch, Viola Gast, Sophie Marlen Tröger, Christian Wolff, Daniela Zühlke, Claudia Hirschfeld, Rabea Schlüter, Katharina Riedel
    Frontiers in Microbiology.2019;[Epub]     CrossRef
  • Dietary wood pulp-derived sterols modulation of cholesterol metabolism and gut microbiota in high-fat-diet-fed hamsters
    Xiang Li, Huali Wang, Tianxin Wang, Fuping Zheng, Hao Wang, Chengtao Wang
    Food & Function.2019; 10(2): 775.     CrossRef
  • The Gut Microbiota Affects Host Pathophysiology as an Endocrine Organ: A Focus on Cardiovascular Disease
    Marco Busnelli, Stefano Manzini, Giulia Chiesa
    Nutrients.2019; 12(1): 79.     CrossRef
  • Non-antibiotic therapy forClostridioides difficileinfection: a review
    Jingpeng Yang, Hong Yang
    Critical Reviews in Clinical Laboratory Sciences.2019; 56(7): 493.     CrossRef
  • Clostridioides difficile LuxS mediates inter-bacterial interactions within biofilms
    Ross T. Slater, Lucy R. Frost, Sian E. Jossi, Andrew D. Millard, Meera Unnikrishnan
    Scientific Reports.2019;[Epub]     CrossRef
  • Importance of microbial defence systems to bile salts and mechanisms of serum cholesterol reduction
    Šárka Horáčková, Milada Plocková, Kateřina Demnerová
    Biotechnology Advances.2018; 36(3): 682.     CrossRef
  • Biliary tract exploration through a common bile duct incision or left hepatic duct stump in laparoscopic left hemihepatectomy for left side hepatolithiasis: which is better?
    Xintao Zeng, Pei Yang, Wentao Wang
    Medicine.2018; 97(46): e13080.     CrossRef
Recombinant baculovirus-based vaccine expressing M2 protein induces protective CD8+ T-cell immunity against respiratory syncytial virus infection
Jeong-Yoon Lee , Jun Chang
J. Microbiol. 2017;55(11):900-908.   Published online October 27, 2017
DOI: https://doi.org/10.1007/s12275-017-7306-6
  • 51 View
  • 0 Download
  • 9 Crossref
AbstractAbstract
Respiratory syncytial virus (RSV) is an important cause of acute lower respiratory tract disease in infants, young children, immunocompromised individuals, and the elderly. However, despite ongoing efforts to develop an RSV vaccine, there is still no authorized RSV vaccine for humans. Baculovirus has attracted attention as a vaccine vector because of its ability to induce a high level of humoral and cellular immunity, low cytotoxicity against various antigens, and biological safety for humans. In this study, we constructed a recombinant baculovirus- based vaccine expressing the M2 protein of RSV under the control of cytomegalovirus promoter (Bac_RSVM2) to induce CD8+ T-cell responses which play an important role in viral clearance, and investigated its protective efficacy against RSV infection. Immunization with Bac_RSVM2 via intranasal or intramuscular route effectively elicited the specific CD8+ T-cell responses. Most notably, immunization with Bac_RSVM2 vaccine almost completely protected mice from RSV challenge without vaccine-enhanced immunopathology. In conclusion, these results suggest that Bac_RSVM2 vaccine employing the baculovirus delivery platform has promising potential to be developed as a safe and novel RSV vaccine that provides protection against RSV infection.

Citations

Citations to this article as recorded by  
  • Respiratory delivered vaccines: Current status and perspectives in rational formulation design
    Lan Wu, Wenwen Xu, Huiyang Jiang, Mingshi Yang, Dongmei Cun
    Acta Pharmaceutica Sinica B.2024; 14(12): 5132.     CrossRef
  • Enhanced virulence of genetically engineered Autographa californica nucleopolyhedrovirus owing to accelerated viral DNA replication aided by inserted ascovirus genes
    Huan Yu, Chang-Jin Yang, Yi-Yi Ou-Yang, Yue Tong, Hui-Yu Lan, Jia-Min Gan, Shi-Wei Li, Ding-Yi Bai, Guo-Hua Huang
    Pesticide Biochemistry and Physiology.2023; 192: 105382.     CrossRef
  • Cytokines and CD8 T cell immunity during respiratory syncytial virus infection
    Megan E. Schmidt, Steven M. Varga
    Cytokine.2020; 133: 154481.     CrossRef
  • Induction of mucosal immunity against pathogens by using recombinant baculoviral vectors: Mechanisms, advantages, and limitations
    Mario Fragoso-Saavedra, Marco A Vega-López
    Journal of Leukocyte Biology.2020; 108(3): 835.     CrossRef
  • Endogenous n-3 Polyunsaturated Fatty Acids Are Beneficial to Dampen CD8+ T Cell-Mediated Inflammatory Response upon the Viral Infection in Mice
    Kyung Won Kang, Seyoung Kim, Yong-Bin Cho, Seung Rok Ryu, Young-Jin Seo, Sang-Myeong Lee
    International Journal of Molecular Sciences.2019; 20(18): 4510.     CrossRef
  • Anti-viral activity of compounds from Agrimonia pilosa and Galla rhois extract mixture
    Jeong Eun Kwon, Yeong-Geun Lee, Ji-Hun Kang, Yun-Feng Bai, Yong Joon Jeong, Nam-In Baek, Young-Jin Seo, Se Chan Kang
    Bioorganic Chemistry.2019; 93: 103320.     CrossRef
  • Vaccine containing G protein fragment and recombinant baculovirus expressing M2 protein induces protective immunity to respiratory syncytial virus
    Yeong-Min Jo, Jungwoo Kim, Jun Chang
    Clinical and Experimental Vaccine Research.2019; 8(1): 43.     CrossRef
  • Recombinant live attenuated influenza vaccine viruses carrying CD8 T-cell epitopes of respiratory syncytial virus protect mice against both pathogens without inflammatory disease
    Tatiana Kotomina, Irina Isakova-Sivak, Victoria Matyushenko, Ki-Hye Kim, Youri Lee, Yu-Jin Jung, Sang-Moo Kang, Larisa Rudenko
    Antiviral Research.2019; 168: 9.     CrossRef
  • The CD8 T Cell Response to Respiratory Virus Infections
    Megan E. Schmidt, Steven M. Varga
    Frontiers in Immunology.2018;[Epub]     CrossRef
Dense Granule Protein-7 (GRA-7) of Toxoplasma gondii inhibits viral replication in vitro and in vivo
Prasanna Weeratunga , Thilina U. B. Herath , Tae-Hwan Kim , Hyun-Cheol Lee , Jae-Hoon Kim , Byeong-Hoon Lee , Eun-Seo Lee , Kiramage Chathuranga , W. A. Gayan Chathuranga , Chul-Su Yang , Jin Yeul Ma , Jong-Soo Lee
J. Microbiol. 2017;55(11):909-917.   Published online October 27, 2017
DOI: https://doi.org/10.1007/s12275-017-7392-5
  • 50 View
  • 0 Download
  • 15 Crossref
AbstractAbstract
Dense granule protein-7 (GRA-7) is an excretory protein of Toxoplasma gondii. It is a potential serodiagnostic marker and vaccine candidate for toxoplasmosis. Previous reports demonstrated that GRA-7 induces innate immune responses in macrophages by interacting with TRAF6 via the MyD88- dependent pathway. In the present study, we evaluated the antiviral activity and induction of an antiviral state by GRA-7 both in vitro and in vivo. It was observed that GRA-7 markedly reduced the replication of vesicular stomatitis virus (VSVGFP), influenza A virus (PR8-GFP), coxsackievirus (H3- GFP), herpes simplex virus (HSV-GFP), and adenovirus-GFP in epithelial (HEK293T/HeLa) and immune (RAW264.7) cells. These antiviral activities of GRA-7 were attributed to the induction of type I interferon (IFN) signaling, resulting in the secretion of IFNs and pro-inflammatory cytokines. Additionally, in BALB/c mice, intranasal administration of GRA-7 prevented lethal infection by influenza A virus (H1N1) and exhibited prophylactic effects against respiratory syncytial virus (RSV-GFP). Collectively, these results suggested that GRA-7 exhibits immunostimulatory and broad spectrum antiviral activities via type I IFN signaling. Thus, GRA-7 can be potentially used as a vaccine adjuvant or as a candidate drug with prophylactic potential against viruses.

Citations

Citations to this article as recorded by  
  • Effect of SARS-CoV-2 and Toxoplasma gondii co-infection on IFN-γ and TNF-α expression and its impact on disease severity
    Magda S.A. Abdeltawab, Mohamed Fateen, Shimaa Saad El-Din, Riem M. Elmessiery, Osama Mohammady Mohamed, Khaled Marzouk Sadek, Engy Medhat, Alshaimaa M.R. Hamed
    Cytokine.2024; 177: 156545.     CrossRef
  • Impact of latent toxoplasmosis on pneumonic and non-pneumonic COVID-19 patients with estimation of relevant oxidative stress biomarkers
    Doaa A. Hamdy, Ragaey A. Eid, Heba Abdel-Tawab, Mohamed A. El-Badry, Abdelrahman M. Abdallah, Wegdan M. Abd El Wahab
    Folia Parasitologica.2024;[Epub]     CrossRef
  • IFNs in host defence and parasite immune evasion during Toxoplasma gondii infections
    Carsten G. K. Lüder
    Frontiers in Immunology.2024;[Epub]     CrossRef
  • Current vaccine candidate of toxoplasmosis
    Eden WOLDEGERIMA, Fasika GETACHEW, Meseret MISGANAW, Yohannes MESFIN, Debaka BELETE, Tekeba SISAY, Nega BERHANE
    Journal of Life Science and Biomedicine.2024; : 54.     CrossRef
  • Prevalence of Toxoplasma gondii infection in COVID-19 patients: A systematic review and meta-analysis
    Mahdi Fakhar, Khadijeh Najafi Ghobadi, Nastaran Barati, Salman Zafari, Seyed Ali Hosseini, Eissa Soleymani, Seyedmousa Motavallihaghi
    Microbial Pathogenesis.2024; 197: 107064.     CrossRef
  • Clinical and Immunological Impacts of Latent Toxoplasmosis on COVID-19 Patients
    Samar Habib, Eman Hamza, Randa El-Gamal, Nessma A Nosser, Wafaa A Aboukamar, Sherehan Abdelsalam, Ali Sobh, Mohamed Elegezy, Mohamed Elbayoumy, Waleed Eldars, Khaled Elmasry, Marwa H Elnagdy
    Cureus.2023;[Epub]     CrossRef
  • Association between breakthrough infection with COVID-19 and Toxoplasma gondii: a cross-sectional study
    Marwa A. Gouda, Hind S. AboShabaan, Ahmed S. Abdelgawad, Aliaa Sabry Abdel Wahed, Khaled A. Abd El-Razik, Yara Elsaadawy, Ayman. A. Abdel-Wahab, Yousry Hawash
    Scientific Reports.2023;[Epub]     CrossRef
  • Toxoplasmosis and symptoms severity in patients with COVID-19 in referral centers in Northern Iran
    Ali Geraili, Alireza Badirzadeh, Maryam Sadeghi, Seyed Mahmoud Mousavi, Parisa Mousavi, Zabihollah Shahmoradi, Sayed-Mohsen Hosseini, Seyed Hossein Hejazi, Raheleh Rafiei-Sefiddashti
    Journal of Parasitic Diseases.2023; 47(1): 185.     CrossRef
  • Synergistic effect of GRA7 and profilin proteins in vaccination against chronic Toxoplasma gondii infection
    Nadia Arcon, Mariano S. Picchio, Ignacio M. Fenoy, Rosalía E. Moretta, Ariadna S. Soto, Matías D. Perrone Sibilia, Vanesa R. Sánchez, Cecilia A. Prato, María Virginia Tribulatti, Alejandra Goldman, Valentina Martin
    Vaccine.2021; 39(6): 933.     CrossRef
  • GRA8 DNA vaccine formulations protect against chronic toxoplasmosis
    Muhammet Karakavuk, Hüseyin Can, Aytül Gül, Aysu Değirmenci Döşkaya, Sedef Erkunt Alak, Cemal Ün, Adnan Yüksel Gürüz, Mert Döşkaya
    Microbial Pathogenesis.2021; 158: 105016.     CrossRef
  • Role of interferon gamma in SARS-CoV-2-positive patients with parasitic infections
    Enas Fakhry Abdel-Hamed, Mohamed N. Ibrahim, Nahed E. Mostafa, Howayda S. F. Moawad, Nahla E. Elgammal, Ehab M. Darwiesh, Dina S. El-rafey, Nissreen E. ElBadawy, Emad Ali Al-Khoufi, Salwa I. Hindawi
    Gut Pathogens.2021;[Epub]     CrossRef
  • The role of polyspecific T-cell exhaustion in severe outcomes for COVID-19 patients having latent pathogen infections such as Toxoplasma gondii
    Kevin Roe
    Microbial Pathogenesis.2021; 161: 105299.     CrossRef
  • Preparation of colloidal gold immunochromatographic test strips for the diagnosis ofToxoplasma gondii
    Yuanxi Shen, Zhaozhe Wang, Jiajing Li, Rui Xu, Rongyi Ji, Jiaojiao Lin, Chuangang Zhu
    Food and Agricultural Immunology.2020; 31(1): 630.     CrossRef
  • A negative covariation between toxoplasmosis and CoVID-19 with alternative interpretations
    Łukasz Jankowiak, Lajos Rozsa, Piotr Tryjanowski, Anders Pape Møller
    Scientific Reports.2020;[Epub]     CrossRef
  • Characterization of a novel secretory spherical body protein in Babesia orientalis and Babesia orientalis-infected erythrocytes
    Jiaying Guo, Muxiao Li, Yali Sun, Long Yu, Pei He, Zheng Nie, Xueyan Zhan, Yangnan Zhao, Xiaoying Luo, Sen Wang, Siqi Aoyang, Qin Liu, Cuiqin Huang, Lan He, Junlong Zhao
    Parasites & Vectors.2018;[Epub]     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP