Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Current issue

Page Path
HOME > Browse Articles > Current issue
10 Current issue
Filter
Filter
Article category
Keywords
Authors
Volume 62(12); December 2024
Prev issue Next issue
Review
Fecal Microbiota Transplantation: Indications, Methods, and Challenges.
Jee Young Lee, Yehwon Kim, Jiyoun Kim, Jiyeun Kate Kim
J. Microbiol. 2024;62(12):1057-1074.   Published online November 18, 2024
DOI: https://doi.org/10.1007/s12275-024-00184-3
  • 38 View
  • 0 Download
AbstractAbstract
Over the past two decades, as the importance of gut microbiota to human health has become widely known, attempts have been made to treat diseases by correcting dysbiosis of gut microbiota through fecal microbiota transplantation (FMT). Apart from current knowledge of gut microbiota, FMT to treat disease has a long history, from the treatment of food poisoning in the fourth century to the treatment of Clostridioides difficile infections in the twentieth century. In 2013, FMT was recognized as a standard treatment for recurrent C. difficile because it consistently showed high efficacy. Though recurrent C. difficile is the only disease internationally recognized for FMT efficacy, FMT has been tested for other diseases and shown some promising preliminary results. Different FMT methods have been developed using various formulations and administration routes. Despite advances in FMT, some issues remain to be resolved, such as donor screening, manufacturing protocols, and unknown components in the fecal microbiota. In this review, we discuss the mechanisms, clinical indications, methods, and challenges of current FMT. We also discuss the development of alternative therapies to overcome the challenges of FMT.
Journal Articles
An Optimized Method for Reconstruction of Transcriptional Regulatory Networks in Bacteria Using ChIP-exo and RNA-seq Datasets
Minchang Jang, Joon Young Park, Gayeon Lee, Donghyuk Kim
J. Microbiol. 2024;62(12):1075-1088.   Published online November 11, 2024
DOI: https://doi.org/10.1007/s12275-024-00181-6
  • 22 View
  • 0 Download
AbstractAbstract
Transcriptional regulatory networks (TRNs) in bacteria are crucial for elucidating the mechanisms that regulate gene expression and cellular responses to environmental stimuli. These networks delineate the interactions between transcription factors (TFs) and their target genes, thereby uncovering the regulatory processes that modulate gene expression under varying environmental conditions. Analyzing TRNs offers valuable insights into bacterial adaptation, stress responses, and metabolic optimization from an evolutionary standpoint. Additionally, understanding TRNs can drive the development of novel antimicrobial therapies and the engineering of microbial strains for biofuel and bioproduct production. This protocol integrates advanced data analysis pipelines, including ChEAP, DEOCSU, and DESeq2, to analyze omics datasets that encompass genome-wide TF binding sites and transcriptome profiles derived from ChIP-exo and RNA-seq experiments. This approach minimizes both the time required and the risk of bias, making it accessible to non-expert users. Key steps in the protocol include preprocessing and peak calling from ChIP-exo data, differential expression analysis of RNA-seq data, and motif and regulon analysis. This method offers a comprehensive and efficient framework for TRN reconstruction across various bacterial strains, enhancing both the accuracy and reliability of the analysis while providing valuable insights for basic and applied research.
Leuconostoc aquikimchii sp. nov., a Lactic Acid Bacterium Isolated from Cabbage Watery Kimchi
Subin Kim, Se Hee Lee, Ki Hyun Kim, Misun Yun
J. Microbiol. 2024;62(12):1089-1097.   Published online December 2, 2024
DOI: https://doi.org/10.1007/s12275-024-00188-z
  • 22 View
  • 0 Download
AbstractAbstract
Two Gram-stain-positive, facultatively anaerobic, non-hemolytic, coccoid-shaped bacterial strains, designated MS01(T) and MS02, were isolated from cabbage watery kimchi in the Republic of Korea. Cellular growth occurred at 5-25 ℃ (optimum, 20 ℃), pH 5-8 (optimum, pH 7) and in the presence of 0-5% (w/v) NaCl (optimum, 1%). Results of 16S rRNA gene-based phylogenetic analyses showed that strains MS01(T) and MS02 shared identical sequences, clustered within the Leuconostoc clade in phylogenetic trees, and were most closely related to Leuconostoc inhae IH003(T) and Leuconostoc gasicomitatum LMG 18811(T) with sequence similarities of 98.74%. The complete whole-genome sequences of strains MS01(T) and MS02 measured 2.04-2.06 Mbp and harbored a 50.6 kb plasmid, with DNA G + C contents of 37.7% for both. Based on average nucleotide identities (ANI) and digital DNA-DNA hybridization (dDDH) values, both strains were confirmed to belong to the same species but showed ≤ 85.9% ANI and ≤ 29.9% dDDH values to other Leuconostoc species, indicating that they represent a novel species. Metabolic pathway reconstruction revealed that both strains perform heterolactic acid fermentation, producing lactate, acetate, and ethanol. Chemotaxonomic analyses, including cellular fatty acids, polar lipids, and peptidoglycan amino acid, confirmed the inclusion of both strains within the genus Leuconostoc. Based on the phylogenetic, genomic, and phenotypic characterization, strains MS01(T) and MS02 were considered to represent a novel species within the genus Leuconostoc, for which the name Leuconostoc aquikimchii sp. nov. is proposed with MS01(T) (= KACC 23748(T) = JCM 37028(T)) as the type strain.
Thalassotalea aquiviva sp. nov., and Thalassotalea maritima sp. nov., Isolated from Seawater of the Coast in South Korea
Jina Lee, Seung-Hui Song, Kira Moon, Nakyeong Lee, Sangdon Ryu, Hye Seon Song, Sung Moon Lee, Yun Ji Kim, Se Won Chun, Kyung-Min Choi, Aslan Hwanhwi Lee
J. Microbiol. 2024;62(12):1099-1111.   Published online December 10, 2024
DOI: https://doi.org/10.1007/s12275-024-00191-4
  • 22 View
  • 0 Download
AbstractAbstract
Two novel bacterial strains, 273M-4T and Sam97T, were isolated from seawater in the Yellow Sea, Muan-gun, South Korea, and identified as members of the genus Thalassotalea. Both strains were Gram-stain-negative, aerobic, rod-shaped, non-motile, non-flagellated, and oxidase- and catalase-positive. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains 273M-4T and Sam97T were most closely related to Thalassotalea ponticola KCTC 42155T, with sequence similarities of 97.5% and 98.3%, respectively. Optimal growth for strain 273M-4T occurred at 25-30 °C, pH 7.0, and 2% NaCl, while strain Sam97T grew optimally at 30 °C, pH 8.0, and 2% NaCl. Genome sizes of strains 273M-4T and Sam97T were 3.37 and 3.31 Mb, with DNA G + C contents of 41.0 mol% and 42.9 mol%, respectively. The orthologous average nucleotide identity (OrthoANI) and digital DNA-DNA hybridization (dDDH) values between the two strains were 71.6% and 24.4%, respectively, indicating that they are distinct species. Further genomic analyses of these two strains revealed OrthoANI values of < 73.5% and dDDH values of < 26.7% within the genus Thalassotalea, suggesting their distinctiveness from other Thalassotalea species. The predominate fatty acids of strains 273M-4T and Sam97T were summed feature 3 (consisting of C16:1 ω7c/C16:1 ω6c) and C16:0. All strains contained phosphatidylethanolamine and phosphatidylglycerol as the major polar lipids and ubiquinone-8 (Q-8) as the primary respiratory quinone. Based on phenotypic, phylogenetic, genotypic, and chemotaxonomic data, strains 273M-4T (= KCTC 8644T = LMG 33695T) and Sam97T (= KCTC 8645T = LMG 33694T) represent novel species of the genus Thalassotalea, named Thalassotalea aquiviva sp. nov. and Thalassotalea maritima sp. nov..
Gut Microbiota Dysbiosis Facilitates Susceptibility to Bloodstream Infection
Xiaomin Lin, Chun Lin, Xin Li, Fen Yao, Xiaoling Guo, Meimei Wang, Mi Zeng, Yumeng Yuan, Qingdong Xie, Xudong Huang, Xiaoyang Jiao
J. Microbiol. 2024;62(12):1113-1124.   Published online December 2, 2024
DOI: https://doi.org/10.1007/s12275-024-00190-5
  • 22 View
  • 0 Download
AbstractAbstract
To study the role of intestinal flora in the development of bloodstream infections (BSIs). 42 patients and 19 healthy controls (HCs) were screened into the study and their intestinal flora was measured by 16S rRNA gene sequencing. The bacterial diversity was significantly lower in the BSI group compared with that in the HCs (P < 0.001), and beta diversity was significantly differentiated between the two groups (PERMANOVA, P = 0.001). The four keystone species [Roseburia, Faecalibacterium, Prevotella, and Enterococcus (LDA > 4)] differed significantly between the two groups. Dysbiosis of fecal microbial ecology is a common condition present in patients with BSI. The proliferation of certain pathogens or reduction of SCFA-producing bacteria would cause susceptibility to BSI.
CalR Inhibits the Swimming Motility and Polar Flagellar Gene Expression in Vibrio parahaemolyticus
Jingyang Chang, Yining Zhou, Miaomiao Zhang, Xue Li, Nan Zhang, Xi Luo, Bin Ni, Haisheng Wu, Renfei Lu, Yiquan Zhang
J. Microbiol. 2024;62(12):1125-1132.   Published online December 6, 2024
DOI: https://doi.org/10.1007/s12275-024-00179-0
  • 18 View
  • 0 Download
AbstractAbstract
Vibrio parahaemolyticus has two flagellar systems, the polar flagellum and lateral flagella, which are both intricately regulated by a multitude of factors. CalR, a LysR-type transcriptional regulator, is sensitive to calcium (Ca) and plays a crucial role in regulating the virulence and swarming motility of V. parahaemolyticus. In this study, we have demonstrated that the deletion of calR significantly enhances the swimming motility of V. parahaemolyticus under low Ca conditions but not under high Ca conditions or in the absence of Ca. CalR binds to the regulatory DNA regions of flgM, flgA, and flgB, which are located within the polar flagellar gene loci, with the purpose of repressing their transcription. Additionally, it exerts an indirect negative control over the transcription of flgK. The overexpression of CalR in Escherichia coli resulted in a reduction in the expression levels of flgM, flgA, and flgB, while having no impact on the expression of flgK. In summary, this research demonstrates that the negative regulation of V. parahaemolyticus swimming motility by CalR under low Ca conditions is achieved through its regulation on the transcription of polar flagellar genes.
Characterization of Newly Isolated Bacteriophages Targeting Carbapenem-Resistant Klebsiella pneumoniae
Bokyung Kim, Shukho Kim, Yoon-Jung Choi, Minsang Shin, Jungmin Kim
J. Microbiol. 2024;62(12):1133-1153.   Published online December 10, 2024
DOI: https://doi.org/10.1007/s12275-024-00180-7
  • 19 View
  • 0 Download
AbstractAbstract
Klebsiella pneumoniae, a Gram-negative opportunistic pathogen, is increasingly resistant to carbapenems in clinical settings. This growing problem necessitates the development of alternative antibiotics, with phage therapy being one promising option. In this study, we investigated novel phages targeting carbapenem-resistant Klebsiella pneumoniae (CRKP) and evaluated their lytic capacity against clinical isolates of CRKP. First, 23 CRKP clinical isolates were characterized using Multi-Locus Sequence Typing (MLST), carbapenemase test, string test, and capsule typing. MLST classified the 23 K. pneumoniae isolates into 10 sequence types (STs), with the capsule types divided into nine known and one unknown type. From sewage samples collected from a tertiary hospital, 38 phages were isolated. Phenotypic and genotypic characterization of these phages was performed using Random Amplification of Polymorphic DNA-PCR (RAPD-PCR), transmission electron microscopy (TEM), and whole genome sequencing (WGS) analysis. Host spectrum analysis revealed that each phage selectively lysed strains sharing the same STs as their hosts, indicating ST-specific activity. These phages were subtyped based on their host spectrum and RAPD-PCR, identifying nine and five groups, respectively. Fourteen phages were selected for further analysis using TEM and WGS, revealing 13 Myoviruses and one Podovirus. Genomic analysis grouped the phages into three clusters: one closely related to Alcyoneusvirus, one to Autographiviridae, and others to Straboviridae. Our results showed that the host spectrum of K. pneumoniae-specific phages corresponds to the STs of the host strain. These 14 novel phages also hold promise as valuable resources for phage therapy against CRKP.
Comparative Secretory Efficiency of Two Chitosanase Signal Peptides from Bacillus subtilis in Escherichia coli
Tae-Yang Eom, Yehui Gang, Youngdeuk Lee, Yoon-Hyeok Kang, Eunyoung Jo, Svini Dileepa Marasinghe, Heung Sik Park, Gun-Hoo Park, Chulhong Oh
J. Microbiol. 2024;62(12):1155-1164.   Published online November 25, 2024
DOI: https://doi.org/10.1007/s12275-024-00186-1
  • 20 View
  • 0 Download
AbstractAbstract
The production of recombinant proteins in Escherichia coli is often challenged by cytoplasmic expression due to proteolytic degradation and inclusion body formation. Extracellular expression can overcome these problems by simplifying downstream processing and improving protein yields. This study aims to compare the efficiency of two Bacillus subtilis chitosanase signal peptides in mediating extracellular secretion in E. coli. We identified a naturally occurring mutant signal peptide (mCsn2-SP) from B. subtilis CH2 chitosanase (CH2CSN), which is characterized by a deletion of six amino acids in the N-region relative to the signal peptide (Csn1-SP) from B. subtilis CH1 chitosanase (CH1CSN). The CH1CSN and CH2CSN genes were cloned into the pET-11a vector and protein secretion was evaluated in E. coli BL21(DE3) host cells. Expression was induced with 0.1 mM and 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) at 30 °C for one and three days. CH2CSN showed higher secretion levels compared to CH1CSN under all experimental conditions, especially with 0.1 mM IPTG induction for 3 days, which resulted in a 2.37-fold increase in secretion. Furthermore, it was demonstrated that mCsn2-SP is capable of secreting human Cu,Zn-superoxide dismutase (hSOD) in E. coli BL21(DE3) and successfully translocating it to the periplasmic region. This study represents the inaugural investigation into the utilisation of a naturally modified signal peptide, thereby corroborating the assertion that signal peptide deletion variants can influence protein secretion efficiency. Furthermore, the findings substantiate the proposition that such variants can serve as a viable alternative for the secretion of heterologous proteins in E. coli.
Inhibition of Virulence Associated Traits by β-Sitosterol Isolated from Hibiscus rosa-sinensis Flowers Against Candida albicans: Mechanistic Insight and Molecular Docking Studies
Pallvi Mohana, Atamjit Singh, Farhana Rashid, Sharabjit Singh, Kirandeep Kaur, Rupali Rana, Preet Mohinder Singh Bedi, Neena Bedi, Rajinder Kaur, Saroj Arora
J. Microbiol. 2024;62(12):1165-1175.   Published online November 6, 2024
DOI: https://doi.org/10.1007/s12275-024-00174-5
  • 18 View
  • 0 Download
AbstractAbstract
The emerging drug resistance and lack of safer and more potent antifungal agents make Candida infections another hot topic in the healthcare system. At the same time, the potential of plant products in developing novel antifungal drugs is also in the limelight. Considering these facts, we have investigated the different extracts of the flowers of Hibiscus rosa-sinensis of the Malvaceae family for their antifungal efficacy against five different pathogenic Candida strains. Among the various extracts, the chloroform extract showed the maximum zone of inhibition (26.6 ± 0.5 mm) against the Candida albicans strain. Furthermore, the chloroform fraction was isolated, and a sterol compound was identified as β-sitosterol. Mechanistic studies were conducted to understand the mechanism of action, and the results showed that β-sitosterol has significant antifungal activity and is capable of interrupting biofilm formation and acts by inhibiting ergosterol biosynthesis in Candida albicans cells. Microscopic and molecular docking studies confirmed these findings. Overall, the study validates the antifungal efficacy of Candida albicans due to the presence of β-sitosterol which can act as an effective constituent for antifungal drug development individually or in combination.
Published Erratum
Erratum: Unexpected Requirement of Small Amino Acids at Position 183 for DNA Binding in the Escherichia coli cAMP Receptor Protein
Marcus Carranza, Amanda Rea, Daisy Pacheco, Christian Montiel, Jin Park, Hwan Youn
J. Microbiol. 2024;62(12):1177-1177.   Published online November 6, 2024
DOI: https://doi.org/10.1007/s12275-024-00189-y
  • 17 View
  • 0 Download

Journal of Microbiology : Journal of Microbiology
TOP