Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Previous issues

Page Path
HOME > Browse Articles > Previous issues
11 Previous issues
Filter
Filter
Article category
Volume 56(5); May 2018
Prev issue Next issue
Reviews
MINIREVIEW] Cure of tuberculosis using nanotechnology: An overview
Rout George Kerry , Sushanto Gouda , Bikram Sil , Gitishree Das , Han-Seung Shin , Gajanan Ghodake , Jayanta Kumar Patra
J. Microbiol. 2018;56(5):287-299.   Published online May 2, 2018
DOI: https://doi.org/10.1007/s12275-018-7414-y
  • 12 View
  • 0 Download
  • 13 Citations
AbstractAbstract
Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), a major health issue of the present era. The bacterium inhabits the host macrophage and other immune cells where it modulates the lysosome trafficking protein, hinders the formation of phagolysosome, and blocks the TNF receptor- dependent apoptosis of host macrophage/monocytes. Other limitations such as resistance to and low bioavailability and bio-distribution of conventional drugs aid to their high virulence and human mortality. This review highlights the use of nanotechnology-based approaches for drug formulation and delivery which could open new avenues to limit the pathogenicity of tuberculosis. Moreover phytochemicals, such as alkaloids, phenols, saponins, steroids, tannins, and terpenoids, extracted from terrestrial plants and mangroves seem promising against M. tuberculosis through different molecular mechanisms. Further understanding of the genomics and proteomics of this pathogenic microbe could also help overcome various research gaps in the path of developing a suitable therapy against tuberculosis.
MINIREVIEW] Importance of differential identification of Mycobacterium tuberculosis strains for understanding differences in their prevalence, treatment efficacy, and vaccine development
Hansong Chae , Sung Jae Shin
J. Microbiol. 2018;56(5):300-311.   Published online May 2, 2018
DOI: https://doi.org/10.1007/s12275-018-8041-3
  • 10 View
  • 0 Download
  • 22 Citations
AbstractAbstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a serious global health problem in the 21st century because of its high mortality. Mtb is an extremely successful human-adapted pathogen that displays a multifactorial ability to control the host immune response and to evade killing by drugs, resulting in the breakdown of BCG vaccine-conferred anti-TB immunity and development of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb. Although genetic components of the genomes of the Mtb complex strains are highly conserved, showing over 99% similarity to other bacterial genera, recently accumulated evidence suggests that the genetic diversity of the Mtb complex strains has implications for treatment outcomes, development of MDR/XDR Mtb, BCG vaccine efficacy, transmissibility, and epidemiological outbreaks. Thus, new insights into the pathophysiological features of the Mtb complex strains are required for development of novel vaccines and for control of MDR/XDR Mtb infection, eventually leading to refinement of treatment regimens and the health care system. Many studies have focused on the differential identification of Mtb complex strains belonging to different lineages because of differences in their virulence and geographical dominance. In this review, we discuss the impact of differing genetic characteristics among Mtb complex strains on vaccine efficacy, treatment outcome, development of MDR/ XDR Mtb strains, and epidemiological outbreaks by focusing on the best-adapted human Mtb lineages. We further explore the rationale for differential identification of Mtb strains for more effective control of TB in clinical and laboratory settings by scrutinizing current diagnostic methods.
Journal Articles
Burkholderia alba sp. nov., isolated from a soil sample on Halla mountain in Jeju island
Jae-Won Lee , Ye-Eun Kim , Soo-Je Park
J. Microbiol. 2018;56(5):312-316.   Published online May 2, 2018
DOI: https://doi.org/10.1007/s12275-018-8034-2
  • 10 View
  • 0 Download
  • 3 Citations
AbstractAbstract
A rod-shaped, round and white colony-forming strain AD18T was isolated from the soil on Halla mountain in Jeju Island, Republic of Korea. Comparative analysis of 16S rRNA gene sequence revealed that this strain was closely related to Burkholderia oklahomensis C6786T (98.8%), Burkholderia thailandensis KCTC 23190T (98.5%). DNA-DNA relatedness (14.6%) indicated that the strain AD18T represents a distinct species that is separate from B. oklahomensis C6786T. The isolate grew at pH 5.0–9.0 (optimum, pH 7.0), 0–3% (w/v) NaCl (optimum, 0%), and temperature 10–40°C (optimum 35°C). The sole quinone of the strain was Q-8, and the predominant fatty acids were C16:0, C17:0 cyclo, and C19:0 cyclo ω8c. The genomic DNA G + C content of AD18T was 65.6 mol%. Based on these findings, strain AD18T is proposed to be a novel species in the genus Burkholderia, for which the name Burkholderia alba sp. nov. is proposed (= KCCM 43268T = JCM 32403T). The type strain is AD18T.
Characterization of Flavobacterium aquimarinum sp. nov., a halotolerant bacterium isolated from seawater
Sylvia Kristyanto , Tuan Manh Nguyen , Dhiraj Kumar Chaudhary , Sang-Seob Lee , Jaisoo Kim
J. Microbiol. 2018;56(5):317-323.   Published online May 2, 2018
DOI: https://doi.org/10.1007/s12275-018-7454-3
  • 11 View
  • 0 Download
  • 6 Citations
AbstractAbstract
A novel, aerobic, Gram-stain-negative, non-motile, non-spore forming, rod-shaped bacterium, designated strain Dol 15-39T, was isolated from a seawater sample near Geoje Island in the South Sea, Republic of Korea. The strain was found to be oxidase-negative and catalase-positive. The isolate was observed to grow at temperatures from 4 to 37°C, at salinities of up to 7%, and at pH levels from 6 to 9; moreover, it was not able to degrade starch, DNA, esculin, or tyrosine. Phylogenetic analysis based on 16S rRNA gene sequences showed that Dol 15-39T was most closely related to Flavobacterium jumunjinense HME7102T with a sequence similarity of 97.3%. However, the levels of DNA-DNA relatedness between Dol 15-39T and the most closely related species were much lower than 70%, confirming that they represented distinct genomic species. The genomic DNA G + C content of Dol 15-39T was calculated to be 32.6 mol%. MK-6 was the predominant respiratory quinine, while iso-C15:0 (25.0%), iso- C15:1 G (17.0%), and iso-C17:0 3-OH (10.4%) were the major cellular fatty acids. Phosphatidylethanolamine was identified as a major polar lipid, while various unidentified aminolipids and polar lipids were also detected. Based on polyphasic taxonomic data, Dol 15-39T represents a novel species of the genus Flavobacterium, for which the name F. aquimarinum sp. nov. is proposed. The type strain is accessible under the culture collection numbers (KEMB 9005-617T = JCM 31930T).
Tardibacter chloracetimidivorans gen. nov., sp. nov., a novel member of the family Sphingomonadaceae isolated from an agricultural soil from Jeju Island in Republic of Korea
Hyosun Lee , Dong-Uk Kim , Sooyeon Park , Jung-Hoon Yoon , Jae-Hyung Ahn , Jong-Ok Ka
J. Microbiol. 2018;56(5):324-330.   Published online May 2, 2018
DOI: https://doi.org/10.1007/s12275-018-7455-2
  • 13 View
  • 0 Download
  • 2 Citations
AbstractAbstract
A pale yellow bacterial strain, designated JJ-A5T, was isolated form an agricultural soil from Jeju Island in Republic of Korea. Cells of the strain were Gram-stain-negative, motile, flagellated and rod-shaped. The strain grew at 15–30°C, pH 6.0–9.0, and in the presence of 0–1.5% (w/v) NaCl. Growth occurred on R2A, but not on Luria-Bertani agar, nutrient agar, trypticase soy agar and MacConkey agar. The strain utilized alachlor as a sole carbon source for growth. The strain JJ-A5T showed 16S rRNA gene sequence similarities lower than 95.4% with members of the family Sphingomonadaceae. Phylogenetic analysis showed that the strain belongs to the family Sphingomonadaceae and strain JJ-A5T was distinctly separated from established genera of this family. The strain contained Q-10 as dominant ubiquinone and spermidine as major polyamine. The predominant cellular fatty acids were summed feature 8 (C18:1 ω7c and/or C18:1 ω6c), summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), 11-methyl C18:1 ω7c, C16:0 and C14:0 2-OH. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid, and phosphatidylcholine. The DNA G + C content of the strain was 62.7 mol%. On the basis of the phenotypic, genomic and chemotaxonomic characteristics, strain JJ-A5T is considered to represent a novel genus and species within the family Sphingomonadaceae, for which the name Tardibacter chloracetimidivorans gen. nov., sp. nov. is proposed. The type strain of Tardibacter chloracetimidivorans is JJ-A5T (= KACC 19450T = NBRC 113160T).
Terrabacter ginsengisoli sp. nov., isolated from ginseng cultivating soil
Mei-Fang Jin , Xiao-Tian Quan , Muhammad Zubair Siddiqi , Qing-Zhen Liu , Hong-Shan Yu , Wan-Taek Im
J. Microbiol. 2018;56(5):331-336.   Published online May 2, 2018
DOI: https://doi.org/10.1007/s12275-018-8098-z
  • 9 View
  • 0 Download
  • 3 Citations
AbstractAbstract
A Gram-positive, strictly aerobic, nonmotile, yellowish, coccus- rod-shaped bacterium (designated Gsoil 653T) isolated from ginseng cultivating soil was characterized using a polyphasic approach to clarify its taxonomic position. The strain Gsoil 653T exhibited optimal growth at pH 7.0 on R2A agar medium at 30°C. Phylogenetic analysis based on 16S rRNA gene sequence similarities, indicated that Gsoil 653T belongs to the genus Terrabacter of the family Humibacillus, and was closely related to Terrabacter tumescens DSM 20308T (98.9%), Terrabacter carboxydivorans PY2T (98.9%), Terrabacter terrigena ON10T (98.8%), Terrabacter terrae PPLBT (98.6%), and Terrabacter lapilli LR-26T (98.6%). The DNA G + C content was 70.5 mol%. The major quinone was MK-8(H4). The primary polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidyl-ethanolamine. The predominant fatty acids were iso-C15:0, iso-C16:0, iso-C14:0, and anteiso-C15:0, as in the case of genus Terrabacter, thereby supporting the categorization of strain Gsoil 653T. However, the DNA-DNA relatedness between Gsoil 653T and closely related strains of Terrabacter species was low at less than 31%. Moreover, strain Gsoil 653T could be both genotypically and phenotypically distinguished from the recognized species of the genus Terrabacter. This isolate, therefore, represents a novel species, for which the name Terrabacter ginsengisoli sp. nov. is proposed with the type strain Gsoil 653T (= KACC 19444T = LMG 30325T).
Highly diverse endophytes in roots of Cycas bifida (Cycadaceae), an ancient but endangered gymnosperm
Ying Zheng , Tzen-Yuh Chiang , Chao-Li Huang , Xun Gong
J. Microbiol. 2018;56(5):337-345.   Published online May 2, 2018
DOI: https://doi.org/10.1007/s12275-018-7438-3
  • 10 View
  • 0 Download
  • 40 Citations
AbstractAbstract
As an ancient seed plant, cycads are one of the few gymnosperms that develop a root symbiosis with cyanobacteria, which has allowed cycads to cope with harsh geologic and climatic conditions during the evolutionary process. However, the endophytic microbes in cycad roots remain poorly identified. In this study, using next-generation sequencing techniques, we investigated the microbial diversity and composition of both the coralloid and regular roots of Cycas bifida (Dyer) K.D. Hill. Highly diverse endophytic communities were observed in both the coralloid and regular roots. Of the associated bacteria, the top five families were the Nostocaceae, Sinobacteraceae, Bradyrhizobiaceae, Bacillaceae, and Hyphomicrobiaceae. The Nectriaceae, Trichocomaceae, and Incertae sedis were the predominant fungal families in all root samples. A significant difference in the endophytic bacterial community was detected between coralloid roots and regular roots, but no difference was observed between the fungal communities in the two root types. Cyanobacteria were more dominant in coralloid roots than in regular roots. The divergence of cycad root structures and the modified physiological processes may have contributed to the abundance of cyanobionts in coralloid roots. Consequently, the colonization of cyanobacteria inhibits the assemblage of other endophytes. Our results contribute to an understanding of the species diversity and composition of the cycad-endophyte microbiome and provide an abbreviated list of potential ecological roles of the core microbes present.
Core gut microbiota in Jinhua pigs and its correlation with strain, farm and weaning age
Hua Yang , Yingping Xiao , Junjun Wang , Yun Xiang , Yujie Gong , Xueting Wen , Defa Li
J. Microbiol. 2018;56(5):346-355.   Published online May 2, 2018
DOI: https://doi.org/10.1007/s12275-018-7486-8
  • 10 View
  • 0 Download
  • 53 Citations
AbstractAbstract
Gut microbial diversity and the core microbiota of the Jinhua pig, which is a traditional, slow-growing Chinese breed with a high body-fat content, were examined from a total of 105 fecal samples collected from 6 groups of pigs at 3 weaning ages that originated from 2 strains and were raised on 3 different pig farms. The bacterial community was analyzed following high-throughput pyrosequencing of 16S rRNA genes, and the fecal concentrations of short-chain fatty acids (SCFAs) were measured by gas chromatograph. Our results showed that Firmicutes and Bacteroidetes were the dominant phyla, and Lactobacillus, Streptococcus, Clostridium, SMB53, and Bifidobacterium were the most abundant genera. Fifteen predominant genera present in every Jinhua pig sample constituted a phylogenetic core microbiota and included the probiotics Lactobacillus and Bifidobacterium, and the SCFAproducing bacteria Clostridium, Prevotella, Bacteroides, Coprococcus, Roseburia, Ruminococcus, Blautia, and Butyricicoccus. Comparisons of the microbiota compositions and SCFA concentrations across the 6 groups of pigs demonstrated that genetic background and weaning age affected the structure of the gut microbiota more significantly than the farm. The relative abundance of the core genera in the pigs, including Lactobacillus, Clostridium, Prevotella, Bacteroides, Roseburia, Ruminococcus, Blautia, and Butyricicoccus varied dramatically in pigs among the 2 origins and 3 weaning ages, while Oscillospira, Megasphaera, Parabacteroides, and Corynebacterium differed among pigs from different farms. Interestingly, there was a more significant influence of strain and weaning age than of rearing farm on the SCFA concentrations. Therefore, strain and weaning age appear to be the more important factors shaping the intestinal microbiome of pigs.
An efficient Agrobacterium-mediated transformation method for aflatoxin generation fungus Aspergillus flavus
Guomin Han , Qian Shao , Cuiping Li , Kai Zhao , Li Jiang , Jun Fan , Haiyang Jiang , Fang Tao
J. Microbiol. 2018;56(5):356-364.   Published online May 2, 2018
DOI: https://doi.org/10.1007/s12275-018-7349-3
  • 10 View
  • 0 Download
  • 21 Citations
AbstractAbstract
Aspergillus flavus often invade many important corps and produce harmful aflatoxins both in preharvest and during storage stages. The regulation mechanism of aflatoxin biosynthesis in this fungus has not been well explored mainly due to the lack of an efficient transformation method for constructing a genome-wide gene mutant library. This challenge was resolved in this study, where a reliable and efficient Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for A. flavus NRRL 3357 was established. The results showed that removal of multinucleate conidia, to collect a homogenous sample of uninucleate conidia for use as the transformation material, is the key step in this procedure. A. tumefaciens strain AGL-1 harboring the ble gene for zeocin resistance under the control of the gpdA promoter from A. nidulans is suitable for genetic transformation of this fungus. We successfully generated A. flavus transformants with an efficiency of ~ 60 positive transformants per 106 conidia using our protocol. A small-scale insertional mutant library (~ 1,000 mutants) was constructed using this method and the resulting several mutants lacked both production of conidia and aflatoxin biosynthesis capacity. Southern blotting analysis demonstrated that the majority of the transformants contained a single T-DNA insert on the genome. To the best of our knowledge, this is the first report of genetic transformation of A. flavus via ATMT and our protocol provides an effective tool for construction of genome-wide gene mutant libraries for functional analysis of important genes in A. flavus.
Comparative genomic analysis of Geosporobacter ferrireducens and its versatility of anaerobic energy metabolism
Man-Young Jung , So-Jeong Kim , Jong-Geol Kim , Heeji Hong , Joo-Han Gwak , Soo-Je Park , Yang-Hoon Kim , Sung-Keun Rhee
J. Microbiol. 2018;56(5):365-371.   Published online May 2, 2018
DOI: https://doi.org/10.1007/s12275-018-7451-6
  • 9 View
  • 0 Download
  • 6 Citations
AbstractAbstract
Members of the family Clostridiaceae within phylum Firmicutes are ubiquitous in various iron-reducing environments. However, genomic data on iron-reducing bacteria of the family Clostridiaceae, particularly regarding their environmental distribution, are limited. Here, we report the analysis and comparison of the genomic properties of Geosporobacter ferrireducens IRF9, a strict anaerobe that ferments sugars and degrades toluene under iron-reducing conditions, with those of the closely related species, Geosporobacter subterraneus DSM 17957. Putative alkyl succinate synthase-encoding genes were observed in the genome of strain IRF9 instead of the typical benzyl succinate synthase-encoding genes. Canonical genes associated with iron reduction were not observed in either genome. The genomes of strains IRF9 and DMS 17957 harbored genes for acetogenesis, that encode two types of Rnf complexes mediating the translocation of H+ and Na+ ions, respectively. Strain IRF9 harbored two different types of ATPases (Na+-dependent F-type ATPase and H+- dependent V-type ATPase), which enable full exploitation of ion gradients. The versatile energy conservation potential of strain IRF9 promotes its survival in various environmental conditions.
Published Erratum
Erratum] A murine colitis model developed using a combination of dextran sulfate sodium and Citrobacter rodentium
Jin-Il Park , Sun-Min Seo , Jong-Hyung Park , Hee-Yeon Jeon , Jun-Young Kim , Seung-Hyun Ryu , Yang-Kyu Choi
J. Microbiol. 2018;56(5):372-372.
DOI: https://doi.org/10.1007/s12275-018-0578-7
  • 11 View
  • 0 Download
AbstractAbstract
In the article by Park et al. published in Journal of Microbiology 2018; 56, 272–279, the supplementary data Figs S1 and S2 should be corrected as below. The original article can be found online at https://doi.org/10.1007/s12275-018-7504-x.

Journal of Microbiology : Journal of Microbiology
TOP