Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Previous issues

Page Path
HOME > Browse Articles > Previous issues
10 Previous issues
Filter
Filter
Article category
Keywords
Volume 59(7); July 2021
Prev issue Next issue
Review
Potential of Bacillus velezensis as a probiotic in animal feed: a review
Fatima Khalid , Anam Khalid , Yuechi Fu , Qian Hu , Yunfang Zheng , Salman Khan , Zaigui Wang
J. Microbiol. 2021;59(7):627-633.   Published online July 1, 2021
DOI: https://doi.org/10.1007/s12275-021-1161-1
  • 2 View
  • 0 Download
  • 56 Citations
AbstractAbstract
Bacillus velezensis is a plant growth-promoting bacterium that can also inhibit plant pathogens. However, based on its properties, it is emerging as a probiotic in animal feed. This review focuses on the potential characteristics of B. velezensis for use as a probiotic in the animal feed industry. The review was conducted by collecting recently published articles from peer-reviewed journals. Google Scholar and PubMed were used as search engines to access published literature. Based on the information obtained, the data were divided into three groups to discuss the (i) probiotic characteristics of B. velezensis, (ii) probiotic potential for fish, and (iii) the future potential of this species to be developed as a probiotic for the animal feed industry. Different strains of B. velezensis isolated from different sources were found to have the ability to produce antimicrobial compounds and have a beneficial effect on the gut microbiota, with the potential to be a candidate probiotic in the animal feed industry. This review provides valuable information about the characteristics of B. velezensis, which can provide researchers with a better understanding of the use of this species in the animal feed industry.
Journal Articles
Effect of biostimulation and bioaugmentation on hydrocarbon degradation and detoxification of diesel-contaminated soil: a microcosm study
Patricia Giovanella , Lídia de Azevedo Duarte , Daniela Mayumi Kita , Valéria Maia de Oliveira , Lara Durães Sette
J. Microbiol. 2021;59(7):634-643.   Published online May 15, 2021
DOI: https://doi.org/10.1007/s12275-021-0395-2
  • 3 View
  • 0 Download
  • 7 Citations
AbstractAbstract
Soil contamination with diesel oil is quite common during processes of transport and storage. Bioremediation is considered a safe, economical, and environmentally friendly approach for contaminated soil treatment. In this context, studies using hydrocarbon bioremediation have focused on total petroleum hydrocarbon (TPH) analysis to assess process effectiveness, while ecotoxicity has been neglected. Thus, this study aimed to select a microbial consortium capable of detoxifying diesel oil and apply this consortium to the bioremediation of soil contaminated with this environmental pollutant through different bioremediation approaches. Gas chromatography (GC-FID) was used to analyze diesel oil degradation, while ecotoxicological bioassays with the bioindicators Artemia sp., Aliivibrio fischeri (Microtox), and Cucumis sativus were used to assess detoxification. After 90 days of bioremediation, we found that the biostimulation and biostimulation/ bioaugmentation approaches showed higher rates of diesel oil degradation in relation to natural attenuation (41.9 and 26.7%, respectively). Phytotoxicity increased in the biostimulation and biostimulation/bioaugmentation treatments during the degradation process, whereas in the Microtox test, the toxicity was the same in these treatments as that in the natural attenuation treatment. In both the phytotoxicity and Microtox tests, bioaugmentation treatment showed lower toxicity. However, compared with natural attenuation, this approach did not show satisfactory hydrocarbon degradation. Based on the microcosm experiments results, we conclude that a broader analysis of the success of bioremediation requires the performance of toxicity bioassays.
Comparative study of the geographical spread of genogroup II porcine norovirus and human norovirus
Eung Seo Koo , Yong Seok Jeong
J. Microbiol. 2021;59(7):644-650.   Published online July 1, 2021
DOI: https://doi.org/10.1007/s12275-021-1218-1
  • 4 View
  • 0 Download
  • 1 Citations
AbstractAbstract
Livestock pigs and porcine norovirus could be candidate tools for future studies on the geographic isolation of norovirus. In this study, we provide the first evidence for geographic isolation of the host as a determinant of the distribution of subgenotypes of the porcine norovirus genogroup II (GII) genotype 11. Environmental water samples were collected from peri-urban streams and estuaries in South Korea between 2014 and 2020. In total, 488 GII region C sequences of norovirus open reading frame 2 were isolated. A total of 14 genotypes were detected, two of which (GII.11 and GII.18) corresponded to porcine norovirus. Five human norovirus genotypes (GII.2, GII.3, GII.4, GII.6, and GII.17) and one porcine norovirus genotype (GII.11) comprised the subgenotypes. Integrated analysis of seasonal and geographical factors revealed that the possibility of the co-emergence of different GII.11 subgenotypes in the same province was lower than that of human norovirus subgenotypes in the same province. Additional algorithms designed to eliminate potential biases further supported the estimated restricted geographical spread of the GII.11 subgenotypes. Fecal contamination source tracking revealed low detection rates of porcine norovirus in the absence of upstream pig farms. These results suggest that a one-sided viral transmission route, mainly dependent on indirect contact owing to the limited chance of direct contact between geographically separated livestock pig populations, may be responsible for the restricted geographical spread of the GII.11 subgenotypes.
The quorum sensing regulator OpaR is a repressor of polar flagellum genes in Vibrio parahaemolyticus
Renfei Lu , Junfang Sun , Yue Qiu , Miaomiao Zhang , Xingfan Xue , Xue Li , Wenhui Yang , Dongsheng Zhou , Lingfei Hu , Yiquan Zhang
J. Microbiol. 2021;59(7):651-657.   Published online June 1, 2021
DOI: https://doi.org/10.1007/s12275-021-0629-3
  • 2 View
  • 0 Download
  • 21 Citations
AbstractAbstract
Vibrio parahaemolyticus possesses two types of flagella: a single polar flagellum (Pof) for swimming and the peritrichous lateral flagella (Laf) for swarming. Expression of Laf genes has previously been reported to be regulated by the quorum sensing (QS) regulators AphA and OpaR. In the present study, we showed that OpaR, the QS regulator at high cell density (HCD), acted as a negative regulator of swimming motility and the transcription of Pof genes in V. parahaemolyticus. OpaR bound to the promoter-proximal DNA regions of flgAMN, flgMN, and flgBCDEFGHIJ within the Pof gene loci to repress their transcription, whereas it negatively regulates the transcription of flgKL-flaC in an indirect manner. Thus, this work investigated how QS regulated the swimming motility via direct action of its master regulator OpaR on the transcription of Pof genes in V. parahaemolyticus.
Zinc-binding domain mediates pleiotropic functions of Yvh1 in Cryptococcus neoformans
Jae-Hyung Jin , Myung Kyung Choi , Hyun-Soo Cho , Yong-Sun Bahn
J. Microbiol. 2021;59(7):658-665.   Published online July 1, 2021
DOI: https://doi.org/10.1007/s12275-021-1287-1
  • 4 View
  • 0 Download
AbstractAbstract
Yvh1 is a dual-specificity phosphatase (DUSP) that is evolutionarily conserved in eukaryotes, including yeasts and humans. Yvh1 is involved in the vegetative growth, differentiation, and virulence of animal and plant fungal pathogens. All Yvh1 orthologs have a conserved DUSP catalytic domain at the N-terminus and a zinc-binding (ZB) domain with two zinc fingers (ZFs) at the C-terminus. Although the DUSP domain is implicated in the regulation of MAPK signaling in humans, only the ZB domain is essential for most cellular functions of Yvh1 in fungi. This study aimed to analyze the functions of the DUSP and ZB domains of Yvh1 in the human fungal pathogen Cryptococcus neoformans, whose Yvh1 (CnYvh1) contains a DUSP domain at the C-terminus and a ZB domain at the N-terminus. Notably, CnYvh1 has an extended internal domain between the two ZF motifs in the ZB domain. To elucidate the function of each domain, we constructed individual domain deletions and swapping strains by complementing the yvh1Δ mutant with wild-type (WT) or mutated YVH1 alleles and examined their Yvh1-dependent phenotypes, including growth under varying stress conditions, mating, and virulence factor production. Here, we found that the complementation of the yvh1Δ mutant with the mutated YVH1 alleles having two ZFs of the ZB domain, but not the DUSP and extended internal domains, restored the WT phenotypic traits in the yvh1Δ mutant. In conclusion, the ZB domain, but not the N-terminal DUSP domain, plays a pivotal role in the pathobiological functions of cryptococcal Yvh1.
The inner membrane protein LapB is required for adaptation to cold stress in an LpxC-independent manner
Han Byeol Lee , Si Hyoung Park , Chang-Ro Lee
J. Microbiol. 2021;59(7):666-674.   Published online May 15, 2021
DOI: https://doi.org/10.1007/s12275-021-1130-8
  • 3 View
  • 0 Download
  • 10 Citations
AbstractAbstract
The inner membrane protein lipopolysaccharide assembly protein B (LapB) is an adaptor protein that activates the proteolysis of LpxC by an essential inner membrane metalloprotease, FtsH, leading to a decrease in the level of lipopolysaccharide in the membrane. In this study, we revealed the mechanism by which the essential inner membrane protein YejM regulates LapB and analyzed the role of the transmembrane domain of LapB in Escherichia coli. The transmembrane domain of YejM genetically and physically interacted with LapB and inhibited its function, which led to the accumulation of LpxC. The transmembrane domain of LapB was indispensable for both its physical interaction with YejM and its regulation of LpxC proteolysis. Notably, we found that the lapB mutant exhibited strong cold sensitivity and this phenotype was not associated with increased accumulation of LpxC. The transmembrane domain of LapB was also required for its role in adaptation to cold stress. Taken together, these
results
showed that LapB plays an important role in both the regulation of LpxC level, which is controlled by its interaction with the transmembrane domain of YejM, and adaptation to cold stress, which is independent of LpxC.
Isolation of a novel strain, Sphingorhabdus sp. YGSMI21 and characterization of its enantioselective epoxide hydrolase activity
Jung-Hee Woo , Hae-Seon Kim , Nyun-Ho Park , Ho Young Suk
J. Microbiol. 2021;59(7):675-680.   Published online June 1, 2021
DOI: https://doi.org/10.1007/s12275-021-1023-x
  • 3 View
  • 0 Download
  • 3 Citations
AbstractAbstract
Sphingorhabdus sp. YGSMI21, a novel microbial strain with an enantioselective epoxide hydrolase activity, was isolated from tidal samples contaminated by accidental oil spills subjected to enriched culture with polycyclic aromatic hydrocarbon. This strain was able to optically decompose (R)-styrene oxide (SO) and showed 100% optical purity. In addition, it showed a good enantioselectivity for the derivatives of (S)- SO, (S)-2-chlorostyrene oxide (CSO), (S)-3-CSO and (S)-4- CSO. For (S)-2-CSO, (S)-3-CSO and (S)-4-CSO, 99.9%ee was obtained with the yield of 26.2%, 24.8%, and 11.0%, respectively, when using 10 mg cells of Sphingorhabdus sp. YGSMI21 at pH 8.0 with 4 mM racemic substrates at pH 8.0 and 25°C. The values obtained in this study for (S)-2-CSO, particularly the yield of 26.2%, is noteworthy, considering that obtaining an enantiomerically pure form is difficult. Taken together, Sphingorhabdus sp. YGSMI21 can be regarded as a wholecell biocatalyst in the production of various (S)-CSO with the chlorine group at a different position.
Mst1/2-ALK promotes NLRP3 inflammasome activation and cell apoptosis during Listeria monocytogenes infection
Aijiao Gao , Huixin Tang , Qian Zhang , Ruiqing Liu , Lin Wang , Yashan Liu , Zhi Qi , Yanna Shen
J. Microbiol. 2021;59(7):681-692.   Published online April 20, 2021
DOI: https://doi.org/10.1007/s12275-021-0638-2
  • 4 View
  • 0 Download
  • 8 Citations
AbstractAbstract
Listeria monocytogenes (L. monocytogenes) is a Gram-positive intracellular foodborne pathogen that causes severe diseases, such as meningitis and sepsis. The NLR family pyrin domain-containing 3 (NLRP3) inflammasome has been reported to participate in host defense against pathogen infection. However, the exact molecular mechanisms underlying NLRP3 inflammasome activation remain to be fully elucidated. In the present study, the roles of mammalian Ste20- like kinases 1/2 (Mst1/2) and Anaplastic Lymphoma Kinase (ALK) in the activation of the NLRP3 inflammasome induced by L. monocytogenes infection were investigated. The expression levels of Mst1/2, phospho (p)-ALK, p-JNK, Nek7, and NLRP3 downstream molecules including activated caspase- 1 (p20) and mature interleukin (IL)-1β (p17), were upregulated in L. monocytogenes-infected macrophages. The ALK inhibitor significantly decreased the expression of p-JNK, Nek7, and NLRP3 downstream molecules in macrophages infected with L. monocytogenes. Furthermore, the Mst1/2 inhibitor markedly inhibited the L. monocytogenes-induced activation of ALK, subsequently downregulating the expression of p-JNK, Nek7, and NLRP3 downstream molecules. Therefore, our study demonstrated that Mst1/2-ALK mediated the activation of the NLRP3 inflammasome by promoting the interaction between Nek7 and NLRP3 via JNK during L. monocytogenes infection, which subsequently increased the maturation and release of proinflammatory cytokine to resist pathogen infection. Moreover, Listeriolysin O played a key role in the process. In addition, we also found that the L. monocytogenes-induced apoptosis of J774A.1 cells was reduced by the Mst1/2 or ALK inhibitor. The present study reported, for the first time, that the Mst1/2-ALK-JNK-NLRP3 signaling pathway plays a vital proinflammatory role during L. monocytogenes infection.
Comparative analysis of type 2 diabetes-associated gut microbiota between Han and Mongolian people
Shu-chun Li , Yao Xiao , Ri-tu Wu , Dan Xie , Huan-hu Zhao , Gang-yi Shen , En-qi Wu
J. Microbiol. 2021;59(7):693-701.   Published online May 15, 2021
DOI: https://doi.org/10.1007/s12275-021-0454-8
  • 3 View
  • 0 Download
  • 14 Citations
AbstractAbstract
Due to the different rates of diabetes in different ethnic groups and the structural differences in intestinal microbiota, this study evaluated the changes in diabetes-related intestinal microbiota in two ethnic groups. Fifty-six stool samples were collected from subjects from the Han and Mongolian ethnic groups in China, including participants without diabetes (non-diabetic, ND) and with type 2 diabetes (T2D). The 16S rDNA gene V3 + V4 area was extracted from microbiota, amplified by PCR, and used to perform high-throughput sequencing and screen differential microbiota associated with ethnicity. The results showed that there were 44 T2D-related bacterial markers in the Han subjects, of which Flavonifractor, Alistipes, Prevotella, Oscillibacter, Clostridium XlVa, and Lachnospiracea_incertae_sedis were most closely related to diabetes. There were 20 T2D-related bacterial markers in the Mongolian subjects, of which Fastidiosipila and Barnesiella were most closely related to diabetes. The common markers of T2D bacteria in the two ethnic groups were Papillibacter and Bifidobacterium. There were 17 metabolic pathways with significant differences between the ND and T2D groups in the Han group, and 29 metabolic pathways in the Mongolian group. The glutamatergic metabolic pathway was the only common metabolic pathway in two ethnic groups. The composition and function of diabetes-related bacteria were significantly different among the different ethnic groups, which suggested that the influence of ethnic differences should be fully considered when studying the association between diabetes and bacteria. In addition, the common bacterial markers found in diabetic patients of different ethnic groups in this study can be used as potential targets to study the pathogenesis and treatment of diabetes.
Genetic changes in plaque-purified varicella vaccine strain Suduvax during in vitro propagation in cell culture
Hye Rim Hwang , Se Hwan Kang , Chan Hee Lee
J. Microbiol. 2021;59(7):702-707.   Published online June 1, 2021
DOI: https://doi.org/10.1007/s12275-021-1062-3
  • 4 View
  • 0 Download
AbstractAbstract
Infection by varicella-zoster virus (VZV) can be prevented by using live attenuated vaccines. VZV vaccine strains are known to evolve rapidly in vivo, however, their genetic and biological effects are not known. In this study, the plaque-purified vaccine strain Suduvax (PPS) was used to understand the genetic changes that occur during the process of propagation in in vitro cell culture. Full genome sequences of three different passages (p4, p30, and p60) of PPS were determined and compared for genetic changes. Mutations were found at 59 positions. The number of genetically polymorphic sites (GPS) and the average of minor allele frequency (MAF) at GPSs were not significantly altered after passaging in cell culture up to p60. The number of variant nucleotide positions (VNPs), wherein GPS was found in at least one passage of PPS, was 149. Overall, MAF changed by less than 5% at 52 VNPs, increased by more than 5% at 42 VNPs, and decreased by more than 5% at 55 VNPs in p60, compared with that seen in p4. More complicated patterns of changes in MAF were observed when genetic polymorphism at 149 VNPs was analyzed among the three passages. However, MAF decreased and mixed genotypes became unequivocally fixed to vaccine type in 23 vaccine-specific positions in higher passages of PPS. Plaque-purified Suduvax appeared to adapt to better replication during in vitro cell culture. Further studies with other vaccine strains and in vivo studies will help to understand the evolution of the VZV vaccine.

Journal of Microbiology : Journal of Microbiology
TOP