Journal Articles
- β-1,3-Glucan/CR3/SYK pathway-dependent LC3B-II accumulation enhanced the fungicidal activity in human neutrophils
-
Ding Li , Changsen Bai , Qing Zhang , Zheng Li , Di Shao , Xichuan Li
-
J. Microbiol. 2019;57(4):263-270. Published online February 5, 2019
-
DOI: https://doi.org/10.1007/s12275-019-8298-1
-
-
47
View
-
0
Download
-
6
Web of Science
-
7
Crossref
-
Abstract
-
Since molecular genotyping has been established for the
Candida species, studies have found that a single Candida
strain (endemic strain) can persist over a long period of time
and results in the spread of nosocomial invasive candidiasis
without general characteristics of horizontal transmissions.
Our previous study also found the existence of endemic
strains in a cancer center in Tianjin, China. In the current
study, we performed further investigation on endemic and
non-endemic Candida albicans strains, with the aim of explaining
the higher morbidity of endemic strains. In an in
vivo experiment, mice infected with endemic strains showed
significantly shorter survival time and higher kidney fungal
burdens compared to mice infected with non-endemic strains.
In an in vitro experiment, the killing percentage of neutrophils
to endemic strains was significantly lower than that to
non-endemic strains, which is positively linked to the ratio
of LC3B-II/I in neutrophils. An immunofluorescence assay
showed more β-1,3-glucan exposure on the cell walls of nonendemic
strains compared to endemic strains. After blocking
the β-glucan receptor (CR3) or inhibiting downstream
kinase (SYK) in neutrophils, the killing percent to C. albicans
(regardless of endemic and non-endemic strains) and the ratio
of LC3B-II/I of neutrophils were significantly decreased.
These data suggested that the killing capability of neutrophils
to C. albicans was monitored by β-1,3-glucan via CR3/SYK
pathway-dependent LC3B-II accumulation and provided
an explanation for the variable killing capability of neutrophils
to different strains of C. albicans, which would be beneficial
in improving infection control and therapeutic strategies
for invasive candidiasis.
-
Citations
Citations to this article as recorded by

- LC3B: A microtubule-associated protein influences disease progression and prognosis
Yan Chen, Hong Yi, Shan Liao, Junyu He, Yanhong Zhou, Yan Lei
Cytokine & Growth Factor Reviews.2024;[Epub] CrossRef - Autophagy and LC3-associated phagocytosis contribute negatively to the killing capability of THP-1-derived macrophages against Candida albicans at the mid-stage
Ding Li, Lin Wang, Zhihong Zhao, Changsen Bai, Xichuan Li
Immunology Letters.2023; 263: 25. CrossRef - Metabolism and Biodegradation of β-Glucan in vivo
Ziming Zheng, Wenqi Tang, Weipeng Lu, Xu Mu, Yuxuan Liu, Xianglin Pan, Kaiping Wang, Yu Zhang
Frontiers in Veterinary Science.2022;[Epub] CrossRef - Biological Effects of β-Glucans on Osteoclastogenesis
Wataru Ariyoshi, Shiika Hara, Ayaka Koga, Yoshie Nagai-Yoshioka, Ryota Yamasaki
Molecules.2021; 26(7): 1982. CrossRef - Interaction Between Dendritic Cells and Candida krusei β-Glucan Partially Depends on Dectin-1 and It Promotes High IL-10 Production by T Cells
Truc Thi Huong Dinh, Phawida Tummamunkong, Panuwat Padungros, Pranpariya Ponpakdee, Lawan Boonprakong, Wilasinee Saisorn, Asada Leelahavanichkul, Patipark Kueanjinda, Patcharee Ritprajak
Frontiers in Cellular and Infection Microbiology.2021;[Epub] CrossRef - Insights on the Functional Role of Beta-Glucans in Fungal Immunity Using Receptor-Deficient Mouse Models
Mark Joseph Maranan Desamero, Soo-Hyun Chung, Shigeru Kakuta
International Journal of Molecular Sciences.2021; 22(9): 4778. CrossRef - Immunomodulatory Effect of Structurally Characterized Mushroom Sclerotial Polysaccharides Isolated from Polyporus rhinocerus on Bone Marrow Dendritic Cells
Chaoran Liu, Man Wing Choi, Xingkui Xue, Peter C. K. Cheung
Journal of Agricultural and Food Chemistry.2019; 67(43): 12137. CrossRef
- Molecular characterization of SCO0765 as a cellotriose releasing endo-β-1,4-cellulase from Streptomyces coelicolor A(3)
-
Joo-Bin Hong , Vijayalakshmi Dhakshnamoorthy , Chang-Ro Lee
-
J. Microbiol. 2016;54(9):626-631. Published online August 31, 2016
-
DOI: https://doi.org/10.1007/s12275-016-6271-9
-
-
46
View
-
0
Download
-
3
Crossref
-
Abstract
-
The sco0765 gene was annotated as a glycosyl hydrolase family
5 endoglucanase from the genomic sequence of Streptomyces
coelicolor A3(2) and consisted of 2,241 bp encoding a
polypeptide of 747 amino acids (molecular weight of 80.5
kDa) with a 29-amino acid signal peptide for secretion. The
SCO0765 recombinant protein was heterogeneously overexpressed
in Streptomyces lividans TK24 under the control
of a strong ermE* promoter. The purified SCO0765 protein
showed the expected molecular weight of the mature form
(718 aa, 77.6 kDa) on sodium dodecyl sulfate-polyacryl amide
gel electrophoresis. SCO0765 showed high activity toward
β-glucan and carboxymethyl cellulose (CMC) and negligible
activity to Avicel, xylan, and xyloglucan. The SCO0765 cellulase
had a maximum activity at pH 6.0 and 40°C toward
CMC and at pH 9.0 and 50–60°C toward β-glucan. Thin
layer chromatography of the hydrolyzed products of CMC
and β-glucan by SCO0765 gave cellotriose as the major product
and cellotetraose, cellopentaose, and longer oligosaccharides
as the minor products. These results clearly demonstrate
that SCO0765 is an endo-β-1,4-cellulase, hydrolyzing
the β-1,4 glycosidic bond of cellulose into cellotriose.
-
Citations
Citations to this article as recorded by

- Cellulase Promotes Mycobacterial Biofilm Dispersal in Response to a Decrease in the Bacterial Metabolite Gamma-Aminobutyric Acid
Jiaqi Zhang, Yingying Liu, Junxing Hu, Guangxian Leng, Xining Liu, Zailin Cui, Wenzhen Wang, Yufang Ma, Shanshan Sha
International Journal of Molecular Sciences.2024; 25(2): 1051. CrossRef - Haloferax sulfurifontis GUMFAZ2 producing xylanase‐free cellulase retrieved from Haliclona sp. inhabiting rocky shore of Anjuna, Goa‐India
Alisha D. Malik, Irene J. Furtado
Journal of Basic Microbiology.2019; 59(7): 692. CrossRef - Biochemical characterization of a novel cold-adapted agarotetraose-producing α-agarase, AgaWS5, from Catenovulum sediminis WS1-A
Choong Hyun Lee, Chang-Ro Lee, Soon-Kwang Hong
Applied Microbiology and Biotechnology.2019; 103(20): 8403. CrossRef
Research Support, Non-U.S. Gov'ts
- Transcriptional Regulation of fksA, a β-1,3-Glucan Synthase Gene, by the APSES Protein StuA during Aspergillus nidulans Development
-
Bum-Chan Park , Yun-Hee Park , Soohyun Yi , Yu Kyung Choi , Eun-Hye Kang , Hee-Moon Park
-
J. Microbiol. 2014;52(11):940-947. Published online October 31, 2014
-
DOI: https://doi.org/10.1007/s12275-014-4517-y
-
-
51
View
-
0
Download
-
12
Crossref
-
Abstract
-
The temporal and spatial regulation of β-1,3-glucan synthesis plays an important role in morphogenesis during fungal growth and development. Northern blot analysis showed that the transcription of fksA, the gene encoding β-1,3-glucan synthase in Aspergillus nidulans, was cell-cycle-dependent and increased steadily over the duration of the vegetative period, but its overall expression during the asexual and sexual stages was fairly constant up until the time of transcription cessation. In an A. nidulans strain mutated in the eukaryotic bHLH-like APSES transcription factor stuA1, the transcriptional level of fksA, and consequently the content of alkali-insoluble cell wall β-glucan, significantly increased at the conidial chain formation and maturation stage. Electrophoretic mobility shift assays revealed that StuA was bound to StREs (StuA Response Elements) on the fksA promoter region. Promoter analysis with sGFP-fusion constructs also indicated the negative regulation of fksA expression by StuA, especially during asexual development. Taken together, these
data suggest that StuA plays an important role in cell wall biogenesis during the development of A. nidulans, by controlling the transcription level of fksA.
-
Citations
Citations to this article as recorded by

- Survival Factor A (SvfA) Contributes to Aspergillus nidulans Pathogenicity
Joo-Yeon Lim, Ye-Eun Jung, Hye-Eun Hwang, Cheol-Hee Kim, Nese Basaran-Akgul, Sri Harshini Goli, Steven P. Templeton, Hee-Moon Park
Journal of Fungi.2023; 9(2): 143. CrossRef - Potential utility of endophytic Bacillus altitudinis strain P32-3 as a biocontrol agent for the postharvest prevention of sweet potato black rot
Yong-Jing Zhang, Xiao-Ying Cao, Yu-Jie Chen, Hao Cong, Yi-Ming Wang, Ji-Hong Jiang, Lu-Dan Li
Biological Control.2023; 186: 105350. CrossRef - Survival factor SvfA plays multiple roles in differentiation and is essential for completion of sexual development in Aspergillus nidulans
Joo-Yeon Lim, Eun-Hye Kang, Yun-Hee Park, Jun-Ho Kook, Hee-Moon Park
Scientific Reports.2020;[Epub] CrossRef - Expression Analysis of Cell Wall-Related Genes in the Plant Pathogenic Fungus Drechslera teres
Aurélie Backes, Jean-Francois Hausman, Jenny Renaut, Essaid Ait Barka, Cédric Jacquard, Gea Guerriero
Genes.2020; 11(3): 300. CrossRef - Dynamic Transcriptomic and Phosphoproteomic Analysis During Cell Wall Stress in Aspergillus nidulans
Cynthia Chelius, Walker Huso, Samantha Reese, Alexander Doan, Stephen Lincoln, Kelsi Lawson, Bao Tran, Raj Purohit, Trevor Glaros, Ranjan Srivastava, Steven D. Harris, Mark R. Marten
Molecular & Cellular Proteomics.2020; 19(8): 1310. CrossRef - Molecular Dialogues between Early Divergent Fungi and Bacteria in an Antagonism versus a Mutualism
Olga A. Lastovetsky, Lev D. Krasnovsky, Xiaotian Qin, Maria L. Gaspar, Andrii P. Gryganskyi, Marcel Huntemann, Alicia Clum, Manoj Pillay, Krishnaveni Palaniappan, Neha Varghese, Natalia Mikhailova, Dimitrios Stamatis, T. B. K. Reddy, Chris Daum, Nicole Sh
mBio.2020;[Epub] CrossRef - The Basic-Region Helix-Loop-Helix Transcription Factor DevR Significantly Affects Polysaccharide Metabolism in Aspergillus oryzae
Miao Zhuang, Zhi-Min Zhang, Long Jin, Bao-Teng Wang, Yasuji Koyama, Feng-Jie Jin, Maia Kivisaar
Applied and Environmental Microbiology.2019;[Epub] CrossRef - The Dual-Specificity LAMMER Kinase Affects Stress-Response and Morphological Plasticity in Fungi
Joo-Yeon Lim, Hee-Moon Park
Frontiers in Cellular and Infection Microbiology.2019;[Epub] CrossRef - The APSES transcription factor Vst1 is a key regulator of development in microsclerotium‐ and resting mycelium‐producing Verticillium species
Jorge L. Sarmiento‐Villamil, Nicolás E. García‐Pedrajas, Lourdes Baeza‐Montañez, María D. García‐Pedrajas
Molecular Plant Pathology.2018; 19(1): 59. CrossRef - Essential APSES Transcription Factors for Mycotoxin Synthesis, Fungal Development, and Pathogenicity in Aspergillus flavus
Guangshan Yao, Feng Zhang, Xinyi Nie, Xiuna Wang, Jun Yuan, Zhenhong Zhuang, Shihua Wang
Frontiers in Microbiology.2017;[Epub] CrossRef - A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger
Norman Paege, Sascha Jung, Paul Schäpe, Dirk Müller-Hagen, Jean-Paul Ouedraogo, Caroline Heiderich, Johanna Jedamzick, Benjamin M. Nitsche, Cees A. van den Hondel, Arthur F. Ram, Vera Meyer, Kap-Hoon Han
PLOS ONE.2016; 11(11): e0165755. CrossRef - Role of LAMMER Kinase in Cell Wall Biogenesis during Vegetative Growth ofAspergillus nidulans
Yu Kyung Choi, Eun-Hye Kang, Hee-Moon Park
Mycobiology.2014; 42(4): 422. CrossRef
- Biocatalytic Properties and Substrate-binding Ability of a Modular GH10 β-1,4-Xylanase from an Insect-symbiotic Bacterium, Streptomyces mexicanus HY-14
-
Do Young Kim , Dong-Ha Shin , Sora Jung , Jong Suk Lee , Han-Young Cho , Kyung Sook Bae , Chang-Keun Sung , Young Ha Rhee , Kwang-Hee Son , Ho-Yong Park
-
J. Microbiol. 2014;52(10):863-870. Published online October 1, 2014
-
DOI: https://doi.org/10.1007/s12275-014-4390-8
-
-
44
View
-
0
Download
-
17
Crossref
-
Abstract
-
The gene (1350-bp) encoding a modular β-1,4-xylanase (XylU),
which consists of an N-terminal catalytic GH10 domain and
a C-terminal carbohydrate-binding module 2 (CBM 2), from
Streptomyces mexicanus HY-14 was cloned and functionally
characterized. The purified His-tagged recombinant enzyme
(rXylU, 44.0 kDa) was capable of efficiently hydrolyze diverse
xylosidic compounds, p-nitrophenyl-cellobioside, and pnitrophenyl-
xylopyranoside when incubated at pH 5.5 and
65°C. Especially, the specific activities (649.8 U/mg and 587.0
U/mg, respectively) of rXylU toward oat spelts xylan and
beechwood xylan were relatively higher than those (<500.0
U/mg) of many other GH10 homologs toward the same
substrates. The results of enzymatic degradation of birchwood
xylan and xylooligosaccharides (xylotriose to xylohexaose)
revealed that rXylU preferentially hydrolyzed the
substrates to xylobiose (>75%) as the primary degradation
product. Moreover, a small amount (4%<) of xylose was detected
as the degradation product of the evaluated xylosidic
substrates, indicating that rXylU was a peculiar GH10 β-1,4-
xylanase with substrate specificity, which was different from
its retaining homologs. A significant reduction of the binding
ability of rXylU caused by deletion of the C-terminal CBM
2 to various insoluble substrates strongly suggested that the
additional domain might considerably contribute to the
enzyme-substrate interaction.
-
Citations
Citations to this article as recorded by

- Characterization of the recombinant GH10 xylanase from Trichoderma orientalis EU7-22 and its synergistic hydrolysis of bamboo hemicellulose with α-glucuronidase and α-L-arabinofuranosidase
Yong Xue, Yang Song, Jinlian Wu, Lihui Gan, Minnan Long, Jian Liu
Industrial Crops and Products.2023; 194: 116330. CrossRef - Gene cloning, expression, and characterization of two endo-xylanases from Bacillus velezensis and Streptomyces rochei, and their application in xylooligosaccharide production
Jing Zhang, Yan Qin, Qingyan Wang, Sijia Liu, Jin Zhou, Baoxiang He, Xinquan Liang, Liang Xian, Junhua Wu
Frontiers in Microbiology.2023;[Epub] CrossRef - Heterologous expression and characterization of Anaeromyces robustus xylanase and its use in bread making
Zhenyang Liu, Sitao Wen, Guogan Wu, Huawei Wu
European Food Research and Technology.2022; 248(9): 2311. CrossRef - Extremophilic Prokaryotic Endoxylanases: Diversity, Applicability, and Molecular Insights
Digvijay Verma
Frontiers in Microbiology.2021;[Epub] CrossRef - Novel Bi-Modular GH19 Chitinase with Broad pH Stability from a Fibrolytic Intestinal Symbiont of Eisenia fetida, Cellulosimicrobium funkei HY-13
Lu Bai, Jonghoon Kim, Kwang-Hee Son, Chung-Wook Chung, Dong-Ha Shin, Bon-Hwan Ku, Do Kim, Ho-Yong Park
Biomolecules.2021; 11(11): 1735. CrossRef - Identification and Characterization of a Novel, Cold-Adapted d-Xylobiose- and d-Xylose-Releasing Endo-β-1,4-Xylanase from an Antarctic Soil Bacterium, Duganella sp. PAMC 27433
Do Young Kim, Jonghoon Kim, Yung Mi Lee, Jong Suk Lee, Dong-Ha Shin, Bon-Hwan Ku, Kwang-Hee Son, Ho-Yong Park
Biomolecules.2021; 11(5): 680. CrossRef - Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes
Matias Romero Victorica, Marcelo A. Soria, Ramón Alberto Batista-García, Javier A. Ceja-Navarro, Surendra Vikram, Maximiliano Ortiz, Ornella Ontañon, Silvina Ghio, Liliana Martínez-Ávila, Omar Jasiel Quintero García, Clara Etcheverry, Eleonora Campos, Don
Scientific Reports.2020;[Epub] CrossRef - Biochemical Characterization of Xylanases from Streptomyces sp. B6 and Their Application in the Xylooligosaccharide Production from Viscose Fiber Production Waste
Lin Liu, Mingyuan Xu, Yanli Cao, Hai Wang, Jing Shao, Meiqing Xu, Yuancheng Zhang, Yunhe Wang, Weixin Zhang, Xiangfeng Meng, Weifeng Liu
Journal of Agricultural and Food Chemistry.2020; 68(10): 3184. CrossRef - A novel neutral and thermophilic endoxylanase from Streptomyces ipomoeae efficiently produced xylobiose from agricultural and forestry residues
Liang Xian, Zhong Li, Ai-Xing Tang, Yi-Min Qin, Qing-Yun Li, Hai-Bo Liu, You-Yan Liu
Bioresource Technology.2019; 285: 121293. CrossRef - Draft genome of Streptomyces sp. strain 130 and functional analysis of extracellular enzyme producing genes
Munendra Kumar, Prateek Kumar, Payal Das, Monisha Khanna Kapur
Molecular Biology Reports.2019; 46(5): 5063. CrossRef - In silico Screening and Heterologous Expression of a Polyethylene Terephthalate Hydrolase (PETase)-Like Enzyme (SM14est) With Polycaprolactone (PCL)-Degrading Activity, From the Marine Sponge-Derived Strain Streptomyces sp. SM14
Eduardo L. Almeida, Andrés Felipe Carrillo Rincón, Stephen A. Jackson, Alan D. W. Dobson
Frontiers in Microbiology.2019;[Epub] CrossRef - Genetic and functional characterization of a novel GH10 endo-β- 1,4-xylanase with a ricin-type β-trefoil domain-like domain from Luteimicrobium xylanilyticum HY-24
Do Young Kim, Sun Hwa Lee, Min Ji Lee, Han-Young Cho, Jong Suk Lee, Young Ha Rhee, Dong-Ha Shin, Kwang-Hee Son, Ho-Yong Park
International Journal of Biological Macromolecules.2018; 106: 620. CrossRef - Streptomyces spp. in the biocatalysis toolbox
Jelena Spasic, Mina Mandic, Lidija Djokic, Jasmina Nikodinovic-Runic
Applied Microbiology and Biotechnology.2018; 102(8): 3513. CrossRef - Genetic and functional characterization of an extracellular modular GH6 endo-β-1,4-glucanase from an earthworm symbiont, Cellulosimicrobium funkei HY-13
Do Young Kim, Min Ji Lee, Han-Young Cho, Jong Suk Lee, Mi-Hwa Lee, Chung Wook Chung, Dong-Ha Shin, Young Ha Rhee, Kwang-Hee Son, Ho-Yong Park
Antonie van Leeuwenhoek.2016; 109(1): 1. CrossRef - Molecular Characterization of Xylobiose- and Xylopentaose-Producing β-1,4-Endoxylanase SCO5931 from Streptomyces coelicolor A3(2)
Bolormaa Enkhbaatar, Chang-Ro Lee, Young-Soo Hong, Soon-Kwang Hong
Applied Biochemistry and Biotechnology.2016; 180(2): 349. CrossRef - High Genetic Diversity of Microbial Cellulase and Hemicellulase Genes in the Hindgut of Holotrichia parallela Larvae
Ping Sheng, Yushan Li, Sean Marshall, Hongyu Zhang
International Journal of Molecular Sciences.2015; 16(7): 16545. CrossRef - Characterization of a Novel Xylanase Gene from Rumen Content of Hu Sheep
Qian Wang, Yang Luo, Bo He, Lin-Shu Jiang, Jian-Xin Liu, Jia-Kun Wang
Applied Biochemistry and Biotechnology.2015; 177(7): 1424. CrossRef
- Selection of a Streptomyces Strain Able to Produce Cell Wall Degrading Enzymes and Active against Sclerotinia sclerotiorum
-
Adriana Fróes , Andrew Macrae , Juliana Rosa , Marcella Franco , Rodrigo Souza , Rosângela Soares , Rosalie Coelho
-
J. Microbiol. 2012;50(5):798-806. Published online November 4, 2012
-
DOI: https://doi.org/10.1007/s12275-012-2060-2
-
-
36
View
-
0
Download
-
19
Scopus
-
Abstract
-
Control of plant pathogen Sclerotinia sclerotiorum is an ongoing challenge because of its wide host range and the persistence of its sclerotia in soil. Fungicides are the most commonly used method to control this fungus but these can have ecotoxicity impacts. Chitinolytic Streptomyces strains isolated from Brazilian tropical soils were capable of inhibiting S. sclerotiorum growth in vitro, offering new possibilities for integrated pest management and biocontrol, with a new approach to dealing with an old problem. Strain Streptomyces sp. 80 was capable of irreversibly inhibiting fungal growth. Compared to other strains, its crude enzymes had the highest chitinolytic levels when measured at 25°C and strongly inhibited sclerotia from S. sclerotiorum. It produced four hydrolytic enzymes involved in fungal cell wall degradation when cultured in presence of the fungal mycelium. The best production, obtained after three days, was 0.75 U/ml for exochitinase, 0.9 U/ml for endochitinase, 0.16 U/ml for glucanase, and 1.78 U/ml for peptidase. Zymogram analysis confirmed two hydrolytic bands of chitinolytic activity with apparent molecular masses of 45.8 and 206.8 kDa. One glucanase activity with an apparent molecular mass of 55 kDa was also recorded, as well as seven bands of peptidase activity with apparent molecular masses ranging from 15.5 to 108.4 kDa. Differential interference contrast microscopy also showed alterations of hyphal morphology after co-culture. Streptomyces sp. 80 seems to be promising as a biocontrol agent against S. sclerotiorum, contributing to the development of new methods for controlling plant diseases and reducing the negative impact of using fungicides.
- NOTE] Antifungal Activity of Extracellular Hydrolases Produced by Autolysing Aspergillus nidulans Cultures
-
Melinda Szilágyi , Fruzsina Anton , Katalin Forgács , Jae-Hyuk Yu , István Pócsi , Tamás Emri
-
J. Microbiol. 2012;50(5):849-854. Published online November 4, 2012
-
DOI: https://doi.org/10.1007/s12275-012-2001-0
-
-
28
View
-
0
Download
-
8
Scopus
-
Abstract
-
Carbon-starving Aspergillus nidulans cultures produce high activities of versatile hydrolytic enzymes and, among these, ChiB endochitinase and EngA β-1,3-endoglucanase showed significant antifungal activity against various fungal species. Double deletion of engA and chiB diminished the antifungal activity of the fermentation broths and increased conidiogenesis and long-term viability of A. nidulans, but decreased the growth rate on culture media containing weak carbon sources. Production of ChiB and EngA can influence fungal communities either directly due to their antifungal properties or indirectly through their effects on vegetative growth. Our data suggest saprophytic fungi as promising future candidates to develop novel biocontrol technologies.
- Characterization of the 5'-Flanking region upstream from the structural Gene for Zymomonas mobilis Alcohol Dehydrogenase
-
Yoon, Ki Hong , Park, Seung Hwan , Jung, Kyung Hwa , Pack, M. Y.
-
J. Microbiol. 1995;33(2):126-127.
-
-
-
Abstract
-
A Zymomonas mobilis DNA fragment consisting of 207 nucleotides, which corresponded to the 5'-flanking region of an adhB gene encoding alcohol dehydrogenase II, was fused to the structural gene coding for a Bacillus endo-β-1, 4-glucanase. The Z. mobilis DNA fragment was identified to promote 50-fold increase in the expression of endo-β-1,4 glucanase gene in Escherichia coli.
- The role and characterization of β-1,3-glucanase in biocontrol of fusarium solani by pseudomonas stutzeri YPL-1
-
Lim, Ho Seong , Kim, Sang Dal
-
J. Microbiol. 1995;33(4):295-301.
-
-
-
Abstract
-
An antifungal Pseudomonas stutzeri YPL-1 produced extracellular chitinase and β-1,3-glucanase that were key enzymes in the decomposition of fungal hyphal walls. These lytic extracellular enzymes markedly inhibited mycelial growth of the phytopathogenic fungus Fusarium solani. A chitinase from P. stutzeri YPL-1 inhibited fungal mycelial growth by 87%, whereas a β-1,3-glucanase from the bacterium inhibited growth by 53%. Furthermore, co-operative action of the enzymes synergistically inhibited 95% of the fungal growth. The lytic enzymes caused abnormal swelling and retreating on the fungal hyphal walls in a dual cultures. Scanning electron microscopy clearly showed hyphal degradation of F. solani in the regions interacting with P. stutzeri YPL-1. In an in vivo pot test, P. stutzeri YPL-1 proved to have biocontrol ability as a powerful agent in controlling plant disease. Planting of kidney bean (Phaseolus vulgaris L.) seedlings with the bacterial suspension in F. solani-infested soil significantly suppressed the development of fusarial root-rot. The characteristics of a crude preparation of β-1,3-glucanase produced from P. stutzeri YPL-1 were investigated. The bacterium detected after 2 hr of incubation. The enzyme had optimum temperature and pH of 40℃ and pH 5.5, respectively. The enzyme was stable in the pH range of 4.5 to 7.0 and at temperatures below 40℃, with a half-life of 40 min at 60℃.