Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "Arctic tundra"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Down-regulation of microRNA-155 suppressed Candida albicans induced acute lung injury by activating SOCS1 and inhibiting inflammation response
Xiaohua Li , Yuanzhong Gong , Xin Lin , Qiong Lin , Jianxiong Luo , Tianxing Yu , Junping Xu , Lifang Chen , Liyu Xu , Ying Hu
J. Microbiol. 2022;60(4):402-410.   Published online February 14, 2022
DOI: https://doi.org/10.1007/s12275-022-1663-5
  • 21 View
  • 0 Download
  • 6 Citations
AbstractAbstract
Acute lung injury caused by Candida albicans could result in high mortality and morbidity. MicroRNA-155 (miR-155) and suppressor of cytokine signaling 1 (SOCS1) have been believed to play a key in the regulation of inflammatory response. Whether miR-155/SOCS1 axis could regulate the acute lung injury caused by C. albicans has not been reported. The acute lung injury animal model was established with acute infection of C. albicans. miR-155 inhibitor, miR-155 mimic, and sh-SOCS1 were constructed. The binding site between miR- 155 and SOCS1 was identified with dual luciferase reporter assay. Knockdown of miR-155 markedly inhibited the germ tube formation of C. albicans. Knockdown of miR-155 significantly up-regulated the expression of SOCS1, and the binding site between miR-155 and SOCS1 was identified. Knockdown of miR-155 improved the acute lung injury, suppressed inflammatory factors and fungus loading through SOCS1. Knockdown of SOCS1 greatly reversed the influence of miR- 155 inhibitor on the cell apoptosis in vitro. The improvement of acute lung injury caused by C. albicans, suppression of inflammatory response and C. albicans infection, and inhibitor of cell apoptosis were achieved by knocking down miR-155 through SOCS1. This research might provide a new thought for the prevention and treatment of acute lung injury caused by C. albicans through targeting miR-155/SOCS1 axis.
Review
MINIREVIEW] Dynamics of microbial communities and CO2 and CH4 fluxes in the tundra ecosystems of the changing Arctic
Min Jung Kwon , Ji Young Jung , Binu M. Tripathi , Mathias Göckede , Yoo Kyung Lee , Mincheol Kim
J. Microbiol. 2019;57(5):325-336.   Published online January 16, 2019
DOI: https://doi.org/10.1007/s12275-019-8661-2
  • 15 View
  • 0 Download
  • 17 Citations
AbstractAbstract
Arctic tundra ecosystems are rapidly changing due to the amplified effects of global warming within the northern high latitudes. Warming has the potential to increase the thawing of the permafrost and to change the landscape and its geochemical characteristics, as well as terrestrial biota. It is important to investigate microbial processes and community structures, since soil microorganisms play a significant role in decomposing soil organic carbon in the Arctic tundra. In addition, the feedback from tundra ecosystems to climate change, including the emission of greenhouse gases into the atmosphere, is substantially dependent on the compositional and functional changes in the soil microbiome. This article reviews the current state of knowledge of the soil microbiome and the two most abundant greenhouse gas (CO2 and CH4) emissions, and summarizes permafrost thaw-induced changes in the Arctic tundra. Furthermore, we discuss future directions in microbial ecological research coupled with its link to CO2 and CH4 emissions.

Journal of Microbiology : Journal of Microbiology
TOP