Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "CpG island"
Filter
Filter
Article category
Keywords
Publication year
Research Support, Non-U.S. Gov't
Hypermethylation of the interferon regulatory factor 5 promoter in Epstein-Barr virus-associated gastric carcinoma
Seung Myung Dong , Hyun Gyu Lee , Sung-Gyu Cho , Seung-Hyun Kwon , Heejei Yoon , Hyun-Jin Kwon , Ji Hae Lee , Hyemi Kim , Pil-Gu Park , Hoguen Kim , S. Diane Hayward , Jeon Han Park , Jae Myun Lee
J. Microbiol. 2015;53(1):70-76.   Published online January 4, 2015
DOI: https://doi.org/10.1007/s12275-014-4654-3
  • 50 View
  • 0 Download
  • 23 Crossref
AbstractAbstract
Interferon regulatory factor-5 (IRF-5), a member of the mammalian IRF transcription factor family, is regulated by p53, type I interferon and virus infection. IRF-5 participates in virus-induced TLR-mediated innate immune responses and may play a role as a tumor suppressor. It was suppressed in various EBV-infected transformed cells, thus it is valuable to identify the suppression mechanism. We focused on a promoter CpG islands methylation, a kind of epigenetic regulation in EBV-associated Burkitt’s lymphomas (BLs) and gastric carcinomas. IRF-5 is not detected in most of EBV-infected BL cell lines due to hypermethylation of IRF-5 distal promoter (promoter-A), which was restored by a demethylating agent, 5-aza-2􍿁-deoxycytidine. Hypomethylation of CpG islands in promoter-A was observed only in EBV type III latent infected BL cell lines (LCL and Mutu III). Similarly, during EBV infection to Akata-4E3 cells, IRF-5 was observed at early time periods (2 days to 8 weeks), concomitant unmethylation of promoter-A, but suppressed in later infection periods as observed in latency I BL cell lines. Moreover, hypermethylation in IRF-5 promoter-A region was also observed in EBV-associated gastric carcinoma (EBVaGC) cell lines or primary gastric carcinoma tissues, which show type I latent infection. In summary, IRF-5 is suppressed by hypermethylation of its promoter-A in most of EBV-infected transformed cells, especially BLs and EBVaGC. EBV-induced carcinogenesis takes an advantage of proliferative effects of TLR signaling, while limiting IRF-5 mediated negative effects in the establishment of EBVaGCs.

Citations

Citations to this article as recorded by  
  • Epstein–Barr Virus and gastric carcinoma pathogenesis with emphasis on underlying epigenetic mechanisms
    Fatemeh Estaji, Saeed Zibaee, Maryam Torabi, Sharareh Moghim
    Discover Oncology.2024;[Epub]     CrossRef
  • Hypermethylated genome of a fish vertebrate iridovirus ISKNV plays important roles in viral infection
    Mincong Liang, Weiqiang Pan, Yanlin You, Xiaowei Qin, Hualong Su, Zhipeng Zhan, Shaoping Weng, Changjun Guo, Jianguo He
    Communications Biology.2024;[Epub]     CrossRef
  • Role of interferon regulatory factor 5 (IRF5) in tumor progression: Prognostic and therapeutic potential
    Bailey K. Roberts, Gilbert Collado, Betsy J. Barnes
    Biochimica et Biophysica Acta (BBA) - Reviews on Cancer.2024; 1879(1): 189061.     CrossRef
  • IRF5 suppresses metastasis through the regulation of tumor-derived extracellular vesicles and pre-metastatic niche formation
    Bailey K. Roberts, Dan Iris Li, Carter Somerville, Bharati Matta, Vaishali Jha, Adison Steinke, Zarina Brune, Lionel Blanc, Samuel Z. Soffer, Betsy J. Barnes
    Scientific Reports.2024;[Epub]     CrossRef
  • Virus-induced host genomic remodeling dysregulates gene expression, triggering tumorigenesis
    Weixia Dong, Huiqin Wang, Menghui Li, Ping Li, Shaoping Ji
    Frontiers in Cellular and Infection Microbiology.2024;[Epub]     CrossRef
  • Virus hijacking of host epigenetic machinery to impair immune response
    Maëlle Locatelli, Suzanne Faure-Dupuy, Britt A. Glaunsinger
    Journal of Virology.2023;[Epub]     CrossRef
  • Genetic dysregulation of immunologic and oncogenic signaling pathways associated with tumor-intrinsic immune resistance: a molecular basis for combination targeted therapy-immunotherapy for cancer
    Kristian M. Hargadon
    Cellular and Molecular Life Sciences.2023;[Epub]     CrossRef
  • Epigenetics of Epstein Barr virus — A review
    Gadde Shareena, Dileep Kumar
    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease.2023; 1869(8): 166838.     CrossRef
  • Transcriptome Sequencing Highlights the Regulatory Role of DNA Methylation in Immune-Related Genes’ Expression of Chinese Oak Silkworm, Antheraea pernyi
    Saima Kausar, Ruochen Liu, Isma Gul, Muhammad Nadeem Abbas, Hongjuan Cui
    Insects.2022; 13(3): 296.     CrossRef
  • Interferon regulatory factor 5‑induced upregulation of zinc‑finger protein 217 promotes pancreatic carcinoma progression
    Xiao Qiao, Shengxiang Lv, Yan Qiao, Fei Wang, Lin Miao
    Molecular Medicine Reports.2022;[Epub]     CrossRef
  • A Novel Cognition of Decitabine: Insights into Immunomodulation and Antiviral Effects
    Ji Xiao, Ping Liu, Yiliang Wang, Yexuan Zhu, Qiongzhen Zeng, Xiao Hu, Zhe Ren, Yifei Wang
    Molecules.2022; 27(6): 1973.     CrossRef
  • Epstein–Barr Virus Epithelial Cancers—A Comprehensive Understanding to Drive Novel Therapies
    Shuting Han, Joshua K. Tay, Celestine Jia Ling Loh, Axel Jun Ming Chu, Joe Poh Sheng Yeong, Chwee Ming Lim, Han Chong Toh
    Frontiers in Immunology.2021;[Epub]     CrossRef
  • The Impact of Epstein-Barr Virus Infection on Epigenetic Regulation of Host Cell Gene Expression in Epithelial and Lymphocytic Malignancies
    Merrin Man Long Leong, Maria Li Lung
    Frontiers in Oncology.2021;[Epub]     CrossRef
  • Targeting the signaling in Epstein–Barr virus-associated diseases: mechanism, regulation, and clinical study
    Ya Cao, Longlong Xie, Feng Shi, Min Tang, Yueshuo Li, Jianmin Hu, Lin Zhao, Luqing Zhao, Xinfang Yu, Xiangjian Luo, Weihua Liao, Ann M. Bode
    Signal Transduction and Targeted Therapy.2021;[Epub]     CrossRef
  • Aberrantly Methylated-Differentially Expressed Genes and Pathways in Epstein–Barr Virus-Associated Gastric Cancer
    Jing-jing Jing, Hao Li, Ze-yang Wang, Heng Zhou, Li-ping Sun, Yuan Yuan
    Future Oncology.2020; 16(6): 187.     CrossRef
  • P53 in the impaired lungs
    Mohammad A. Uddin, Nektarios Barabutis
    DNA Repair.2020; 95: 102952.     CrossRef
  • DNA methylomes and transcriptomes analysis reveal implication of host DNA methylation machinery in BmNPV proliferation in Bombyx mori
    Haoling Huang, Ping Wu, Shaolun Zhang, Qi Shang, Haotong Yin, Qirui Hou, Jinbo Zhong, Xijie Guo
    BMC Genomics.2019;[Epub]     CrossRef
  • Evidence from genome wide association studies implicates reduced control of Epstein-Barr virus infection in multiple sclerosis susceptibility
    Ali Afrasiabi, Grant P. Parnell, Nicole Fewings, Stephen D. Schibeci, Monica A. Basuki, Ramya Chandramohan, Yuan Zhou, Bruce Taylor, David A. Brown, Sanjay Swaminathan, Fiona C. McKay, Graeme J. Stewart, David R. Booth
    Genome Medicine.2019;[Epub]     CrossRef
  • Epigenetic View on Interferon γ Signalling in Tumour Cells
    E. Selinger, Milan Reiniš
    Folia Biologica.2018; 64(4): 125.     CrossRef
  • DNA Tumor Virus Regulation of Host DNA Methylation and Its Implications for Immune Evasion and Oncogenesis
    Sharon Kuss-Duerkop, Joseph Westrich, Dohun Pyeon
    Viruses.2018; 10(2): 82.     CrossRef
  • DNA hypermethylation induced by Epstein-Barr virus in the development of Epstein-Barr virus-associated gastric carcinoma
    Su Jin Choi, Yu Su Shin, Byung Woog Kang, Jong Gwang Kim, Kyoung-Jae Won, Paul M. Lieberman, Hyosun Cho, Hyojeung Kang
    Archives of Pharmacal Research.2017; 40(8): 894.     CrossRef
  • The Role of Epigenetic Regulation in Epstein-Barr Virus-Associated Gastric Cancer
    Jun Nishikawa, Hisashi Iizasa, Hironori Yoshiyama, Munetaka Nakamura, Mari Saito, Sho Sasaki, Kanami Shimokuri, Masashi Yanagihara, Kouhei Sakai, Yutaka Suehiro, Takahiro Yamasaki, Isao Sakaida
    International Journal of Molecular Sciences.2017; 18(8): 1606.     CrossRef
  • Primary lymphocyte infection models for KSHV and its putative tumorigenesis mechanisms in B cell lymphomas
    Sangmin Kang, Jinjong Myoung
    Journal of Microbiology.2017; 55(5): 319.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP