Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "DUSP"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Review
Structural analysis of dual specificity phosphatases, the only type of protein tyrosine phosphatases found in humans and across diverse microorganisms
Bonsu Ku
J. Microbiol. 2025;63(10):e2506006.   Published online October 31, 2025
DOI: https://doi.org/10.71150/jm.2506006
  • 1,315 View
  • 39 Download
AbstractAbstract PDFSupplementary Material

Dual specificity phosphatases (DUSPs), a subfamily of the protein tyrosine phosphatase (PTP) family, dephosphorylate not only phosphotyrosine but also phosphoserine and phosphothreonine residues. Beyond the 26 members of this family in humans, DUSPs represent the only type of PTPs found across a wide range of microorganisms, including bacteria, archaea, and viruses. This review presents a comprehensive structural analysis of human and microbial DUSPs. These proteins commonly share core features, such as a typical DUSP fold, shallow active site pocket, signature active site motif known as the P-loop, and conserved aspartate residue that acts as a general acid/base. However, DUSPs from diverse microorganisms also display unique structural and functional characteristics. Pseudomonas aeruginosa TpbA is the only bacterial DUSP identified to date, while a second candidate was proposed in this review. Archaeal DUSPs are hyperthermostable, contain a unique motif in their P-loops, and employ dual general acid/base residues. Poxviral DUSPs are characterized by the formation of domain-swapped homodimers. The presence of DUSPs across all domains of life and viruses, along with their low specificity for phosphorylated amino acids and structural similarity to classical PTPs, suggests that DUSPs represent the ancestral form of PTPs.

Journal Article
The small RNA RsaF regulates the expression of secreted virulence factors in Staphylococcus aureus Newman
Niralee Patel , Mrinalini Nair
J. Microbiol. 2021;59(10):920-930.   Published online September 23, 2021
DOI: https://doi.org/10.1007/s12275-021-1205-6
  • 362 View
  • 0 Download
  • 5 Web of Science
  • 5 Crossref
AbstractAbstract PDF
The pathogenesis of Staphylococcus aureus, from local infections to systemic dissemination, is mediated by a battery of virulence factors that are regulated by intricate mechanisms, which include regulatory proteins and small RNAs (sRNAs) as key regulatory molecules. We have investigated the involvement of sRNA RsaF, in the regulation of pathogenicity genes hyaluronate lyase (hysA) and serine proteaselike protein D (splD), by employing S. aureus strains with disruption and overexpression of rsaF. Staphylococcus aureus strain with disruption of rsaF exhibited marked down-regulation of hysA transcripts by 0.2 to 0.0002 fold, and hyaluronate lyase activity by 0.2–0.1 fold, as well as increased biofilm formation, during growth from log phase to stationery phase. These mutants also displayed down-regulation of splD transcripts by 0.8 to 0.005 fold, and reduced activity of multiple proteases by zymography. Conversely, overexpression of rsaF resulted in a 2- to 4- fold increase in hysA mRNA levels and hyaluronidase activity. Both hysA and splD mRNAs demonstrated an increased stability in RsaF+ strains. In silico RNA-RNA interaction indicated a direct base pairing of RsaF with hysA and splD mRNAs, which was established in electrophoretic mobility shift assays. The findings demonstrate a positive regulatory role for small RNA RsaF in the expression of the virulence factors, HysA and SplD.

Citations

Citations to this article as recorded by  
  • Rational Design of High-Efficiency Synthetic Small Regulatory RNAs and Their Application in Robust Genetic Circuit Performance Through Tight Control of Leaky Gene Expression
    Jun Ren, Nuong Thi Nong, Phuong N. Lam Vo, Hyang-Mi Lee, Dokyun Na
    ACS Synthetic Biology.2024; 13(10): 3256.     CrossRef
  • A comprehensive review on microbial hyaluronan-degrading enzymes: from virulence factors to biotechnological tools
    Jia-Yu Jiang, Dai Xue, Jin-Song Gong, Qin-Xin Zheng, Yue-Sheng Zhang, Chang Su, Zheng-Hong Xu, Jin-Song Shi
    Bioresources and Bioprocessing.2024;[Epub]     CrossRef
  • A Regulatory sRNA rli41 is Implicated in Cell Adhesion, Invasion and Pathogenicity in Listeria monocytogenes
    L. X. Wang, C. H. Ji, C. C. Ning, Y. C. Liu, Z. Y. Li, Y. Q. Sun, X. Z. Xia, X. P. Cai, Q. L. Meng, J. Qiao
    Applied Biochemistry and Microbiology.2022; 58(S1): S47.     CrossRef
  • A Review of Biofilm Formation of Staphylococcus aureus and Its Regulation Mechanism
    Qi Peng, Xiaohua Tang, Wanyang Dong, Ning Sun, Wenchang Yuan
    Antibiotics.2022; 12(1): 12.     CrossRef
  • Thirty Years of sRNA-Mediated Regulation in Staphylococcus aureus: From Initial Discoveries to In Vivo Biological Implications
    Guillaume Menard, ChloƩ Silard, Marie Suriray, Astrid Rouillon, Yoann Augagneur
    International Journal of Molecular Sciences.2022; 23(13): 7346.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP