Journal Article
- Phosphorylation of tegument protein pp28 contributes to trafficking to the assembly compartment in human cytomegalovirus infection
-
Jun-Young Seo , Jin Ah Heo , William J. Britt
-
J. Microbiol. 2020;58(7):624-631. Published online June 27, 2020
-
DOI: https://doi.org/10.1007/s12275-020-0263-5
-
-
44
View
-
0
Download
-
5
Web of Science
-
5
Crossref
-
Abstract
-
Human cytomegalovirus (HCMV) UL99 encodes a late tegument
protein pp28 that is essential for envelopment and
production of infectious virus. This protein is localized to
the endoplasmic reticulum-Golgi intermediate compartment
(ERGIC) in transfected cells but it localizes to the cytoplasmic
assembly compartment (AC) in HCMV-infected cells. Trafficking
of pp28 to the AC is required for the assembly of infectious
virus. The N-terminal domain (aa 1-61) of pp28 is
sufficient for trafficking and function of the wild type protein
during viral infection. However, residues required for
authentic pp28 trafficking with the exception of the acidic
cluster in the N-terminal domain of pp28 remain undefined.
Monitoring protein migration on SDS-PAGE, we found that
pp28 is phosphorylated in the virus-infected cells and dephosphorylated
in the viral particles. By generating substitution
mutants of pp28, we showed that three serine residues
(aa 41–43) and a tyrosine residue (aa 34) account for its phosphorylation.
The mutant forms of pp28 were localized to the
plasma membrane as well as the ERGIC in transfected cells.
Likewise, these mutant proteins were localized to the plasma
membrane as well as the AC in virus-infected cells. These results
suggested that phosphorylation of pp28 contributes to
its intracellular trafficking and efficient viral assembly and
incorporation.
-
Citations
Citations to this article as recorded by

- Exploring the genetic associations and causal relationships between antibody responses, immune cells, and various types of breast cancer
Yang Yang, Jiayi Chen, Fuhong Gong, Jingge Miao, Mengping Lin, Ruimin Liu, Chenxi Wang, Fei Ge, Wenlin Chen
Scientific Reports.2024;[Epub] CrossRef - Human cytomegalovirus induces significant structural and functional changes in terminally differentiated human cortical neurons
Jacob W. Adelman, Suzette Rosas-Rogers, Megan L. Schumacher, Rebekah L. Mokry, Scott S. Terhune, Allison D. Ebert, Thomas Shenk
mBio.2023;[Epub] CrossRef - Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review
Janine Zeng, Di Cao, Shaomin Yang, Dabbu Kumar Jaijyan, Xiaolian Liu, Songbin Wu, Ruth Cruz-Cosme, Qiyi Tang, Hua Zhu
Viruses.2023; 15(8): 1703. CrossRef - Features and Functions of the Conserved Herpesvirus Tegument Protein UL11 and Its Binding Partners
Linjiang Yang, Mingshu Wang, Anchun Cheng, Qiao Yang, Ying Wu, Juan Huang, Bin Tian, Renyong Jia, Mafeng Liu, Dekang Zhu, Shun Chen, Xinxin Zhao, Shaqiu Zhang, Xumin Ou, Sai Mao, Qun Gao, Di Sun
Frontiers in Microbiology.2022;[Epub] CrossRef - The human cytomegalovirus decathlon: Ten critical replication events provide opportunities for restriction
Declan L. Turner, Rommel A. Mathias
Frontiers in Cell and Developmental Biology.2022;[Epub] CrossRef
Research Support, Non-U.S. Gov't
- Removal of Contaminating TEM-la β-Lactamase Gene from Removal of Contaminating TEM-la β-Lactamase Gene from
-
Jae Seok Song , Jung Hun Lee , Jung-Hyun Lee , Byeong Chul Jeong , Won-Keun Lee , Sang Hee Lee
-
J. Microbiol. 2006;44(1):126-128.
-
DOI: https://doi.org/2326 [pii]
-
-
Abstract
-
This study confirms that Taq DNA polymerase could be contaminated with the blaTEM-1a gene.
It also proposes two different methods that could be used to overcome DNA contamination: (i)
DNase I treatment prior to PCR amplification; and (ii) the use of a highly purified Taq DNA polymerase
which was devoid of detectable contamination.