Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "Fusobacterium"
Filter
Filter
Article category
Keywords
Publication year
Review
[Minireview]Potential roles of condensin in genome organization and beyond in fission yeast
Kyoung-Dong Kim
J. Microbiol. 2021;59(5):449-459.   Published online April 20, 2021
DOI: https://doi.org/10.1007/s12275-021-1039-2
  • 49 View
  • 0 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract
The genome is highly organized hierarchically by the function of structural maintenance of chromosomes (SMC) complex proteins such as condensin and cohesin from bacteria to humans. Although the roles of SMC complex proteins have been well characterized, their specialized roles in nuclear processes remain unclear. Condensin and cohesin have distinct binding sites and mediate long-range and short-range genomic associations, respectively, to form cell cycle-specific genome organization. Condensin can be recruited to highly expressed genes as well as dispersed repeat genetic elements, such as Pol III-transcribed genes, LTR retrotransposon, and rDNA repeat. In particular, mitotic transcription factors Ace2 and Ams2 recruit condensin to their target genes, forming centromeric clustering during mitosis. Condensin is potentially involved in various chromosomal processes such as the mobility of chromosomes, chromosome territories, DNA reannealing, and transcription factories. The current knowledge of condensin in fission yeast summarized in this review can help us understand how condensin mediates genome organization and participates in chromosomal processes in other organisms.

Citations

Citations to this article as recorded by  
  • Brewing COFFEE: A Sequence-Specific Coarse-Grained Energy Function for Simulations of DNA−Protein Complexes
    Debayan Chakraborty, Balaka Mondal, D. Thirumalai
    Journal of Chemical Theory and Computation.2024; 20(3): 1398.     CrossRef
  • Contributions of transcriptional noise to leukaemia evolution: KAT2A as a case-study
    Cristina Pina
    Philosophical Transactions of the Royal Society B: Biological Sciences.2024;[Epub]     CrossRef
  • Viral remodeling of the 4D nucleome
    Kyoung-Dong Kim, Paul M. Lieberman
    Experimental & Molecular Medicine.2024; 56(4): 799.     CrossRef
  • BiFCo: visualizing cohesin assembly/disassembly cycle in living cells
    Emilio González-Martín, Juan Jiménez, Víctor A Tallada
    Life Science Alliance.2023; 6(7): e202301945.     CrossRef
Journal Article
Fluorescence change of Fusobacterium nucleatum due to Porphyromonas gingivalis
Min-Ah Lee , Si-Mook Kang , Se-Yeon Kim , Ji-Soo Kim , Jin-Bom Kim , Seung-Hwa Jeong
J. Microbiol. 2018;56(9):628-633.   Published online August 23, 2018
DOI: https://doi.org/10.1007/s12275-018-7515-7
  • 44 View
  • 0 Download
  • 3 Crossref
AbstractAbstract
The aim of this study was to measure changes in the fluorescence of Fusobacterium nucleatum interacting with Porphyromonas gingivalis for excitation with blue light at 405-nm. P. gingivalis was mono- and co-cultivated in close proximity with F. nucleatum. The fluorescence of the bacterial colonies was photographed using a QLF-D (Quantitative Light-induced Fluorescence-Digital) Biluminator camera system with a 405 nm light source and a specific filter. The red, green and blue intensities of fluorescence images were analyzed using the image analysis software. A fluorescence spectrometer was used to detect porphyrin synthesized by each bacterium. F. nucleatum, which emitted green fluorescence in single cultures, showed intense red fluorescence when it was grown in close proximity with P. gingivalis. F. nucleatum co-cultivated with P. gingivalis showed the same pattern of fluorescence peaks as for protoporphyrin IX in the red part of the spectrum. We conclude that the green fluorescence of F. nucleatum can change to red fluorescence in the presence of adjacent co-cultured with P. gingivalis, indicating that the fluorescence character of each bacterium might depend on the presence of other bacteria.

Citations

Citations to this article as recorded by  
  • Red/Orange Autofluorescence in Selected Candida Strains Exposed to 405 nm Laser Light
    Rafał Wiench, Dariusz Paliga, Anna Mertas, Elżbieta Bobela, Anna Kuśka-Kiełbratowska, Sonia Bordin-Aykroyd, Aleksandra Kawczyk-Krupka, Kinga Grzech-Leśniak, Monika Lukomska-Szymanska, Edward Lynch, Dariusz Skaba
    Dentistry Journal.2024; 12(3): 48.     CrossRef
  • Autofluorescence Detection Method for Dental Plaque Bacteria Detection and Classification: Example of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Streptococcus mutans
    Yung-Jhe Yan, Bo-Wen Wang, Chih-Man Yang, Ching-Yi Wu, Mang Ou-Yang
    Dentistry Journal.2021; 9(7): 74.     CrossRef
  • Fluorescence image and microbiological analysis of biofilm retained around healthy and inflamed orthodontic miniscrews
    A.S. Garcez, L.C. Barros, M.R.U. Fernandes, D.N. Fujii, S.S. Suzuki, R. Nepomuceno
    Photodiagnosis and Photodynamic Therapy.2020; 30: 101707.     CrossRef
Research Support, Non-U.S. Gov't
Development of Strain-specific PCR Primers Based on a DNA Probe Fu12 for the Identification of Fusobacterium nucleatum subsp. nucleatum ATCC 25586^T
Hwa-Sook Kim , Soo Keun Song , So Young Yoo , Dong Chun Jin , Hwan Seon Shin , Chae Kwang Lim , Myung-Soo Kim , Jin-Soo Kim , Son-Jin Choe , Joong-Ki Kook
J. Microbiol. 2005;43(4):331-336.
DOI: https://doi.org/2257 [pii]
  • 39 View
  • 0 Download
AbstractAbstract
The objective of this study was to assess the strain-specificity of a DNA probe, Fu12, for Fusobacterium nucleatum subsp. nucleatum ATCC 25586^T (F. nucleatum ATCC 25586^T), and to develop sets of strain-specific polymerase chain reaction (PCR) primers. Strain-specificity was tested against 16 strains of F. nucleatum and 3 strains of distinct Fusobacterium species. Southern blot hybridization revealed that the Fu12 reacted exclusively with the HindIII-digested genomic DNA of F. nucleatum ATCC 25586^T. The results of PCR revealed that three pairs of PCR primers, based on the nucleotide sequence of Fu12, generated the strain-specific amplicons from F. nucleatum ATCC 25586^T. These results suggest that the DNA probe Fu12 and the three pairs of PCR primers could be useful in the identification of F. nucleatum ATCC 25586^T, especially with regard to the determination of the authenticity of the strain.

Journal of Microbiology : Journal of Microbiology
TOP