Journal Articles
- CXCL12/CXCR4 Axis is Involved in the Recruitment of NK Cells by HMGB1 Contributing to Persistent Airway Inflammation and AHR During the Late Stage of RSV Infection
-
Sisi Chen , Wei Tang , Guangyuan Yu , Zhengzhen Tang , Enmei Liu
-
J. Microbiol. 2023;61(4):461-469. Published online February 13, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00018-8
-
-
60
View
-
0
Download
-
6
Web of Science
-
6
Crossref
-
Abstract
-
We previously showed that both high-mobility group box-1 (HMGB1) and natural killer (NK) cells contribute to respiratory
syncytial virus (RSV)-induced persistent airway inflammation and airway hyperresponsiveness (AHR). Meanwhile,
Chemokine (C-X-C motif) ligand 12 (CXCL12) and its specific receptor (chemokine receptor 4, CXCR4) play important
roles in recruitment of immune cells. CXCL12 has been reported to form a complex with HMGB1 that binds to CXCR4 and
increases inflammatory cell migration. The relationship between HMGB1, NK cells and chemokines in RSV-infected model
remains unclear. An anti-HMGB1 neutralizing antibody and inhibitor of CXCR4 (AMD3100) was administered to observe
changes of NK cells and airway disorders in nude mice and BALB/c mice. Results showed that the mRNA expression and
protein levels of HMGB1 were elevated in late stage of RSV infection and persistent airway inflammation and AHR were
diminished after administration of anti-HMGB1 antibodies, with an associated significant decrease in CXCR4+
NK cells. In
addition, CXCL12 and CXCR4 were reduced after HMGB1 blockade. Treatment with AMD3100 significantly suppressed
the recruitment of NK cells and alleviated the airway disorders. Thus, CXCL12/CXCR4 axis is involved in the recruitment
of NK cells by HMGB1, contributing to persistent airway inflammation and AHR during the late stage of RSV infection.
-
Citations
Citations to this article as recorded by

- Exploring Ribosomal Genes as Potential Biomarkers of the Immune Microenvironment in Respiratory Syncytial Virus Infection
Lu Lin, Zenghua Liao, Chaoqian Li
Biochemical Genetics.2024;[Epub] CrossRef - DAMPs in immunosenescence and cancer
Fangquan Chen, Hu Tang, Xiutao Cai, Junhao Lin, Rui Kang, Daolin Tang, Jiao Liu
Seminars in Cancer Biology.2024; 106-107: 123. CrossRef - Advancements in Stimulus-Responsive Co-Delivery Nanocarriers for Enhanced Cancer Immunotherapy
Meng-Ru Zhang, Lin-Lin Fang, Yang Guo, Qin Wang, You-Jie Li, Hong-Fang Sun, Shu-Yang Xie, Yan Liang
International Journal of Nanomedicine.2024; Volume 19: 3387. CrossRef - Immunomodulatory markers and therapies for the management of infant respiratory syncytial virus infection
Ricardo A. Loaiza, Mónica A. Farías, Catalina A. Andrade, Mario A. Ramírez, Linmar Rodriguez-Guilarte, José T. Muñóz, Pablo A. González, Susan M. Bueno, Alexis M. Kalergis
Expert Review of Anti-infective Therapy.2024; 22(8): 631. CrossRef - Activin A, a Novel Chemokine, Induces Mouse NK Cell Migration via AKT and Calcium Signaling
Yunfeng Wang, Zhonghui Liu, Yan Qi, Jiandong Wu, Boyang Liu, Xueling Cui
Cells.2024; 13(9): 728. CrossRef - Damage-associated molecular patterns in viral infection: potential therapeutic targets
Huizhen Tian, Qiong Liu, Xiaomin Yu, Yanli Cao, Xiaotian Huang
Critical Reviews in Microbiology.2024; : 1. CrossRef
- Transcriptome‑based Mining of the Constitutive Promoters for Tuning Gene Expression in Aspergillus oryzae
-
Kobkul Laoteng , Jutamas Anantayanon , Chanikul Chutrakul , Sarocha Panchanawaporn , Sukanya Jeennor
-
J. Microbiol. 2023;61(2):199-210. Published online February 6, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00020-0
-
-
49
View
-
0
Download
-
3
Web of Science
-
4
Crossref
-
Abstract
-
Transcriptional regulation has been adopted for developing metabolic engineering tools. The regulatory promoter is a crucial
genetic element for strain optimization. In this study, a gene set of Aspergillus oryzae with highly constitutive expression
across different growth stages was identified through transcriptome data analysis. The candidate promoters were functionally
characterized in A. oryzae by transcriptional control of β-glucuronidase (GUS) as a reporter. The results showed that
the glyceraldehyde triphosphate dehydrogenase promoter (PgpdA1) of A. oryzae with a unique structure displayed the most
robust strength in constitutively controlling the expression compared to the PgpdA2 and other putative promoters tested. In
addition, the ubiquitin promoter (Pubi) of A. oryzae exhibited a moderate expression strength. The deletion analysis revealed
that the 5' untranslated regions of gpdA1 and ubi with the length of 1028 and 811 nucleotides, counted from the putative
translation start site (ATG), respectively, could efficiently drive the GUS expression. Interestingly, both promoters could
function on various carbon sources for cell growth. Glucose was the best fermentable carbon source for allocating high constitutive
expressions during cell growth, and the high concentrations (6–8% glucose, w/v) did not repress their functions. It
was also demonstrated that the secondary metabolite gene coding for indigoidine could express under the control of PgpdA1
or Pubi promoter. These strong and moderate promoters of A. oryzae provided beneficial options in tuning the transcriptional
expression for leveraging the metabolic control towards the targeted products.
-
Citations
Citations to this article as recorded by

- Construction of an Aspergillus oryzae △nptB△pyrG Host for Homologous Expression of Lipase and Catalytic Property Characterization of Recombinant Lipase
Yueting Zhang, Hongmei Nie, Fei Zhang, Mengmeng Jin, Zhao Wang, Jianyong Zheng
Applied Biochemistry and Biotechnology.2024;[Epub] CrossRef - Mining and Understanding of New Transcriptional Regulatory Elements from Licorice-Derived Endophyte Serratia Rubidaea W12-1
Ying Zhang, Yunyang Ma, Bing Hu, H.M. Zabed, A.K. Singh, M.A. Ibrahim, N. Chen
BIO Web of Conferences.2024; 142: 03018. CrossRef - Exploring and Engineering Novel Strong Promoters for High-Level Protein Expression in Bacillus subtilis DB104 through Transcriptome Analysis
Ji-Su Jun, Hyang-Eun Jeong, Kwang-Won Hong
Microorganisms.2023; 11(12): 2929. CrossRef - Efficient de novo production of bioactive cordycepin by Aspergillus oryzae using a food-grade expression platform
Sukanya Jeennor, Jutamas Anantayanon, Sarocha Panchanawaporn, Chanikul Chutrakul, Wanwipa Vongsangnak, Kobkul Laoteng
Microbial Cell Factories.2023;[Epub] CrossRef
- [Protocol]Rapid method for chromatin immunoprecipitation (ChIP) assay in a dimorphic fungus, Candida albicans
-
Jueun Kim , Jung-Shin Lee
-
J. Microbiol. 2020;58(1):11-16. Published online June 11, 2019
-
DOI: https://doi.org/10.1007/s12275-020-9143-2
-
-
45
View
-
0
Download
-
4
Web of Science
-
5
Crossref
-
Abstract
-
A chromatin immunoprecipitation (ChIP) assay is a method
to identify how much a protein of interest binds to the DNA
region. This method is indispensable to study the mechanisms
of how the transcription factors or chromatin modifications
regulate the gene expression. Candida albicans is a dimorphic
pathogenic fungus, which can change its morphology very rapidly
from yeast to hypha in response to the environmental
signal. The morphological change of C. albicans is one of the
critical factors for its virulence. Therefore, it is necessary to
understand how to regulate the expression of genes for C.
albicans to change its morphology. One of the essential methods
for us to understand this regulation is a ChIP assay.
There have been many efforts to optimize the protocol to lower
the background signal and to analyze the results accurately
because a ChIP assay can provide very different results even
with slight differences in the experimental procedure. We
have optimized the rapid and efficient ChIP protocol so that
it could be applied equally for both yeast and hyphal forms of
C. albicans. Our method in this protocol is also comparatively
rapid to the method widely used. In this protocol, we described
our rapid method for the ChIP assay in C. albicans in
detail.
-
Citations
Citations to this article as recorded by

- Transcription tuned by S-nitrosylation underlies a mechanism for Staphylococcus aureus to circumvent vancomycin killing
Xueqin Shu, Yingying Shi, Yi Huang, Dan Yu, Baolin Sun
Nature Communications.2023;[Epub] CrossRef - Molecular Identification, Dimorphism and Virulence of C. albicans
Mohsen A. Sayed, Gihad A. Sayed, Eman Abdullah M. Ali
Research Journal of Pharmacy and Technology.2023; : 1007. CrossRef - Methyltransferase-like 3 silenced inhibited the ferroptosis development via regulating the glutathione peroxidase 4 levels in the intracerebral hemorrhage progression
Liu Zhang, Xiangyu Wang, Wenqiang Che, Yongjun Yi, Shuoming Zhou, Yongjian Feng
Bioengineered.2022; 13(6): 14215. CrossRef - Ino80 is required for H2A.Z eviction from hypha‐specific promoters and hyphal development of Candida albicans
Qun Zhao, Baodi Dai, Hongyu Wu, Wencheng Zhu, Jiangye Chen
Molecular Microbiology.2022; 118(1-2): 92. CrossRef - Set1-mediated H3K4 methylation is required for Candida albicans virulence by regulating intracellular level of reactive oxygen species
Jueun Kim, Shinae Park, Sohee Kwon, Eun-Jin Lee, Jung-Shin Lee
Virulence.2021; 12(1): 2648. CrossRef
Review
- REVIEW] Revisiting old friends: Developments in understanding Histoplasma capsulatum pathogenesis
-
Jon P. Woods
-
J. Microbiol. 2016;54(3):265-276. Published online February 27, 2016
-
DOI: https://doi.org/10.1007/s12275-016-6044-5
-
-
49
View
-
0
Download
-
27
Crossref
-
Abstract
-
Histoplasma capsulatum is a dimorphic pathogenic fungus
and causative agent of histoplasmosis, which is a respiratory
and systemic infection that is particularly severe in immunocompromised
hosts and represents the fungal homolog of
tuberculosis. In highly endemic regions, the majority of individuals
have been infected and carry the organism in a persistent
latent form that is a danger for reactivation if host
defenses are suppressed. H. capsulatum has been a model
organism for intracellular pathogenesis and fungal morphogenesis
for decades. New genomic information and application
of approaches for molecular genetic manipulation are
shedding new light on virulence mechanisms.
-
Citations
Citations to this article as recorded by

- Disseminated histoplasmosis and hemophagocytic lymphohistiocytosis: A case report
Ruth C. Angrand, Lauren Telesca, Muhammad Aslam
IDCases.2025; 39: e02175. CrossRef - Histoplasmosis in Non-HIV Infected Patients: Another Neglected Infection in French Guiana
Houari Aissaoui, Morgane Bourne-Watrin, Benoit Lemarie, Genevieve Guillot, Alolia Aboikoni, Piseth Chhorn, Dana Gaudard, Ghazi Hadj-Amara, Ricardo Manasse, Mahamado Ouedraogo, Charles Salloum, Magalie Demar, Loïc Epelboin, Hatem Kallel, Antoine Adenis, Ma
Journal of Fungi.2024; 10(6): 400. CrossRef - “We've got to get out”—Strategies of human pathogenic fungi to escape from phagocytes
Johannes Sonnberger, Lydia Kasper, Theresa Lange, Sascha Brunke, Bernhard Hube
Molecular Microbiology.2024; 121(3): 341. CrossRef - The influence of a copper efflux pump in Histoplasma capsulatum virulence
Dayane Moraes, Gabriel Brum Tristão, Chad A. Rappleye, Stephanie C. Ray, Fátima Ribeiro‐Dias, Rodrigo Saar Gomes, Leandro do Prado Assunção, Juliano Domiraci Paccez, Rosely Maria Zancopé‐Oliveira, Mirelle Garcia Silva‐Bailão, Célia Maria de Almeida Soares
The FEBS Journal.2024; 291(4): 744. CrossRef - Hemophagocytic Lymphohistiocytosis Secondary to Disseminated Histoplasmosis
Anastasia Wasylyshyn, Gina Maki, Kathleen A. Linder, Erica S. Herc
Infectious Diseases in Clinical Practice.2022;[Epub] CrossRef - Important Mycoses of Wildlife: Emphasis on Etiology, Epidemiology, Diagnosis, and Pathology—A Review: PART 1
Iniobong Chukwuebuka Ikenna Ugochukwu, Chioma Inyang Aneke, Nuhu Abdulazeez Sani, Jacinta Ngozi Omeke, Madubuike Umunna Anyanwu, Amienwanlen Eugene Odigie, Remigius Ibe Onoja, Ohiemi Benjamin Ocheja, Miracle Oluchukwu Ugochukwu, Iasmina Luca, Olabisi Amin
Animals.2022; 12(15): 1874. CrossRef - Key thermally dimorphic fungal pathogens: shaping host immunity
Maxine A. Höft, Lucian Duvenage, J. Claire Hoving
Open Biology.2022;[Epub] CrossRef - Genome-scale CRISPR screening reveals that C3aR signaling is critical for rapid capture of fungi by macrophages
Allison Cohen, Edwin E. Jeng, Mark Voorhies, Jane Symington, Nebat Ali, Rosa A. Rodriguez, Michael C. Bassik, Anita Sil, Alex Andrianopoulos
PLOS Pathogens.2022; 18(9): e1010237. CrossRef - Cbp1, a fungal virulence factor under positive selection, forms an effector complex that drives macrophage lysis
Dinara Azimova, Nadia Herrera, Lucian Duvenage, Mark Voorhies, Rosa A. Rodriguez, Bevin C. English, Jennifer C. Hoving, Oren Rosenberg, Anita Sil, Mairi C. Noverr
PLOS Pathogens.2022; 18(6): e1010417. CrossRef - Hemophagocytic lymphohistiocytosis secondary to progressive disseminated histoplasmosis presenting as cellulitis
Alfredo G. Puing, Shyam S. Raghavan, Maria A. Aleshin, Dora Y. Ho
Medical Mycology Case Reports.2021; 33: 18. CrossRef - Fungal α-1,3-Glucan as a New Pathogen-Associated Molecular Pattern in the Insect Model Host Galleria mellonella
Sylwia Stączek, Agnieszka Zdybicka-Barabas, Iwona Wojda, Adrian Wiater, Paweł Mak, Piotr Suder, Krzysztof Skrzypiec, Małgorzata Cytryńska
Molecules.2021; 26(16): 5097. CrossRef - Comparative Proteomic Analysis of Histoplasma capsulatum Yeast and Mycelium Reveals Differential Metabolic Shifts and Cell Wall Remodeling Processes in the Different Morphotypes
Marcos Abreu Almeida, Lilian Cristiane Baeza, Rodrigo Almeida-Paes, Alexandre Melo Bailão, Clayton Luiz Borges, Allan Jefferson Guimarães, Célia Maria Almeida Soares, Rosely Maria Zancopé-Oliveira
Frontiers in Microbiology.2021;[Epub] CrossRef - Neutrophil and Eosinophil DNA Extracellular Trap Formation: Lessons From Pathogenic Fungi
Juliana da Costa Silva, Glaucia de Azevedo Thompson-Souza, Marina Valente Barroso, Josiane Sabbadini Neves, Rodrigo Tinoco Figueiredo
Frontiers in Microbiology.2021;[Epub] CrossRef - Aspergillus niger α-1,3-glucan acts as a virulence factor by inhibiting the insect phenoloxidase system
Sylwia Stączek, Agnieszka Zdybicka-Barabas, Małgorzata Pleszczyńska, Adrian Wiater, Małgorzata Cytryńska
Journal of Invertebrate Pathology.2020; 171: 107341. CrossRef - Fungal Pathogens: Shape-Shifting Invaders
Kyunghun Min, Aaron M. Neiman, James B. Konopka
Trends in Microbiology.2020; 28(11): 922. CrossRef - Crohn's disease or histoplasmosis? A case of severe disseminated histoplasmosis mimicking Crohn's disease and literature review
Ahmed Ahmed, Nora Homsi, Rajendra Kapila
Medical Mycology Case Reports.2020; 30: 8. CrossRef - Capacity ofHistoplasma capsulatumto Survive the Composting Process
Luisa Fernanda Gómez Londoño, Laura Carolina Pérez León, Juan Guillermo McEwen Ochoa, Alejandra Zuluaga Rodriguez, Carlos Alberto Peláez Jaramillo, Jose Miguel Acevedo Ruiz, María Lucia Taylor, Myrtha Arango Arteaga, María del Pilar Jiménez Alzate
Applied and Environmental Soil Science.2019; 2019: 1. CrossRef - Sensing the heat and the host: Virulence determinants ofHistoplasma capsulatum
Sinem Beyhan, Anita Sil
Virulence.2019; 10(1): 793. CrossRef - Fungal Extracellular Vesicles as Potential Targets for Immune Interventions
Mateus Silveira Freitas, Vânia Luiza Deperon Bonato, Andre Moreira Pessoni, Marcio L. Rodrigues, Arturo Casadevall, Fausto Almeida, Aaron P. Mitchell
mSphere.2019;[Epub] CrossRef - Sporotrichosis between 1898 and 2017: The evolution of knowledge on a changeable disease and on emerging etiological agents.
Leila M Lopes-Bezerra, Hector M Mora-Montes, Yu Zhang, Gustavo Nino-Vega, Anderson Messias Rodrigues, Zoilo Pires de Camargo, Sybren de Hoog
Medical Mycology.2018; 56(suppl_1): S126. CrossRef - Reactivation of dormant/latent fungal infection
Kevin Brunet, Alexandre Alanio, Olivier Lortholary, Blandine Rammaert
Journal of Infection.2018; 77(6): 463. CrossRef - Disseminated histoplasmosis mimicking relapsed chronic lymphocytic leukaemia
Lokesh Shahani
BMJ Case Reports.2018; : bcr-2018-224498. CrossRef - The transcription factor CHOP, an effector of the integrated stress response, is required for host sensitivity to the fungal intracellular pathogen Histoplasma capsulatum
Bevin C. English, Nancy Van Prooyen, Tiit Örd, Tõnis Örd, Anita Sil, Robert A. Cramer
PLOS Pathogens.2017; 13(9): e1006589. CrossRef - Histoplasmosis hepatitis after orthotopic liver transplantation
Laura Washburn, N Thao Galván, Sadhna Dhingra, Abbas Rana, John A Goss
Journal of Surgical Case Reports.2017;[Epub] CrossRef - Fungal infections in HIV/AIDS
Andrew H Limper, Antoine Adenis, Thuy Le, Thomas S Harrison
The Lancet Infectious Diseases.2017; 17(11): e334. CrossRef - Use of Fungal Diagnostics and Therapy in Pediatric Cancer Patients in Resource-Limited Settings
Sheena Mukkada, Jeannette Kirby, Nopporn Apiwattanakul, Randall T. Hayden, Miguela A. Caniza
Current Clinical Microbiology Reports.2016; 3(3): 120. CrossRef - Human fungal pathogens: Why should we learn?
Jeong-Yoon Kim
Journal of Microbiology.2016; 54(3): 145. CrossRef
Research Support, Non-U.S. Gov'ts
- Azole-synergistic Anti-Candidal Activity of Altenusin, a Biphenyl Metabolite of the Endophytic Fungus Alternaria alternata Isolated from Terminalia chebula Retz.
-
Jatuporn Phaopongthai , Suthep Wiyakrutta , Duangdeun Meksuriyen , Nongluksna Sriubolmas , Khanit Suwanborirux
-
J. Microbiol. 2013;51(6):821-828. Published online December 19, 2013
-
DOI: https://doi.org/10.1007/s12275-013-3189-3
-
-
38
View
-
0
Download
-
22
Crossref
-
Abstract
-
In this study, a tropical endophytic fungus, Alternaria alternata
Tche-153 was isolated from a Thai medicinal plant
Terminalia chebula Rezt. The ethyl acetate extract prepared
from the fermentation broth exhibited significant ketoconazole-
synergistic activity against Candida albicans. Bioassaydirected
fractionation of the ethyl acetate extract led to the
isolation of altenusin (1), isoochracinic acid (2), and altenuic
acid (3) together with 2,5-dimethyl-7-hydroxychromone
(4). Using the disc diffusion method and the microdilution
chequerboard technique, only altenusin (1) in combination
with each of three azole drugs, ketoconazole, fluconazole or
itraconazole at their low sub-inhibitory concentrations exhibited
potent synergistic activity against C. albicans with the
fractional inhibitory concentration index range of 0.078 to
0.188. This first discovery of altenusin (1) as a new azole-synergistic
prototype possessing a biphenyl structure is of significance
for further development of new azole-synergists
to treat invasive candidiasis.
-
Citations
Citations to this article as recorded by

- New eremophilane-type sesquiterpenoid and new chromanone isolated from marine derived fungus Humicola sp. GXIMD02070
Quan Teng, Qiuxia Nong, Xin Jin, Chenghai Gao, Along Zhang, Nannan Xing, Xianqiang Chen
Phytochemistry Letters.2025; 65: 48. CrossRef - A New Cyclic Peptide from Betel Nut Endophytic Fungus Alternaria sp. RW-AL
Wu Ruan, Qing-Yun Ma, Jiao-Cen Guo, Qing-Yi Xie, Li Yang, Hao-Fu Dai, You-Geng Wu, You-Xing Zhao
Chemistry of Natural Compounds.2024; 60(4): 693. CrossRef -
Analysis of the components of
Cassia nomame
and their antioxidant activity
Tetsuya Saito, Yuria Kurosu, Hajime Sato, Etsuko Katoh, Takahiro Hosoya
Natural Product Research.2024; : 1. CrossRef - Natural resorcylic lactones derived from alternariol
Joachim Podlech
Beilstein Journal of Organic Chemistry.2024; 20: 2171. CrossRef - Chemical Constituents fromBerchemia polyphyllavar. Leioclada
Wen-Li Xie, Zheng-Yang Lu, Jing Xu, Yu Chen, Hong-Li Teng, Guang-Zhong Yang
ACS Omega.2024;[Epub] CrossRef - Two new α-pyrone derivatives from sponge-derived fungus Curvularia sp. ZYX-Z-4
Qing-Hui Yan, Li Yang, Qing-Yun Ma, Qing-Yi Xie, Hao-Fu Dai, Ying Fu, You-Xing Zhao
Phytochemistry Letters.2023; 55: 6. CrossRef - Chemical constituents of Rumex dentatus L. and their antimicrobial and anti-inflammatory activities
Kailibinuer Aierken, Jun Li, Nannan Xu, Tao Wu, Deng Zang, Haji Akber Aisa
Phytochemistry.2023; 205: 113509. CrossRef - Solieritide A, a new polyketide from the red alga Solieria sp
Ting-Ting Liu, Xiao-Jian Liao, Shi-Hai Xu, Bing-Xin Zhao
Natural Product Research.2021; 35(21): 3780. CrossRef - Exploiting endophytic microbes as micro-factories for plant secondary metabolite production
Sushma Mishra, Pramod Kumar Sahu, Vishad Agarwal, Namrata Singh
Applied Microbiology and Biotechnology.2021; 105(18): 6579. CrossRef - Review: Bioactive metabolites and host‐specific toxins from endophytic Fungi, Alternaria alternate
Nashwa Hashad, Reham Ibrahim, Mohamed Mady, Mohamed S. Abdel‐Aziz, Fatma A. Moharram
Vietnam Journal of Chemistry.2021; 59(6): 733. CrossRef - Cladosporactone A, a Unique Polyketide with 7‐Methylisochromen‐3‐one Skeleton from the Deep‐Sea‐Derived Fungus Cladosporium cladosporioides
Zhi‐Hui He, Gang Zhang, Qin‐Xiang Yan, Zhen‐Biao Zou, Hong‐Xiu Xiao, Chun‐Lan Xie, Xi‐Xiang Tang, Lian‐Zhong Luo, Xian‐Wen Yang
Chemistry & Biodiversity.2020;[Epub] CrossRef - Microbial inhibitors active against Plasmodium falciparum dihydroorotate dehydrogenase derived from an Indonesian soil fungus, Talaromyces pinophilus BioMCC-f.T.3979
Amila Pramisandi, Kazuyuki Dobashi, Mihoko Mori, Kenichi Nonaka, Atsuko Matsumoto, Toshiyuki Tokiwa, Mayuka Higo, Kristiningrum, Eri Amalia, Arif Nurkanto, Daniel Ken Inaoka, Danang Waluyo, Kiyoshi Kita, Tomoyoshi Nozaki, Satoshi Ōmura, Kazuro Shiomi
The Journal of General and Applied Microbiology.2020; 66(5): 273. CrossRef - Bioactive Polyketide Derivatives from the Mangrove-Derived Fungus Daldinia eschscholtzii HJ004
Hai-Xia Liao, Cai-Juan Zheng, Guo-Lei Huang, Rong-Qing Mei, Xu-Hua Nong, Tai-Ming Shao, Guang-Ying Chen, Chang-Yun Wang
Journal of Natural Products.2019; 82(8): 2211. CrossRef - A New Secondary Metabolite from Alternaria Alternata: Structure Elucidation and Total Synthesis of Altenuic Acid IV
Dominik Kohler, Joachim Podlech
European Journal of Organic Chemistry.2019; 2019(8): 1748. CrossRef -
Probiotic Yeasts Inhibit Virulence of Non
-albicans Candida
Species
Lohith Kunyeit, Nawneet K. Kurrey, K. A. Anu-Appaiah, Reeta P. Rao, Joseph Heitman
mBio.2019;[Epub] CrossRef - Endophytic Fungi from Terminalia Species: A Comprehensive Review
Rufin Marie Kouipou Toghueo, Fabrice Fekam Boyom
Journal of Fungi.2019; 5(2): 43. CrossRef - Endophytic Fungi: A Source of Potential Antifungal Compounds
Sunil K. Deshmukh, Manish K. Gupta, Ved Prakash, Sanjai Saxena
Journal of Fungi.2018; 4(3): 77. CrossRef - Perylenequione Derivatives with Anticancer Activities Isolated from the Marine Sponge-Derived Fungus, Alternaria sp. SCSIO41014
Xiaoyan Pang, Xiuping Lin, Pei Wang, Xuefeng Zhou, Bin Yang, Junfeng Wang, Yonghong Liu
Marine Drugs.2018; 16(8): 280. CrossRef - Two New Altenusin/Thiazole Hybrids and a New Benzothiazole Derivative from the Marine Sponge-Derived Fungus Alternaria sp. SCSIOS02F49
Yaping Chen, Ruyan Chen, Jinhuai Xu, Yongqi Tian, Jiangping Xu, Yonghong Liu
Molecules.2018; 23(11): 2844. CrossRef - Characterization of a Prenyltransferase for Iso-A82775C Biosynthesis and Generation of New Congeners of Chloropestolides
Yuanyuan Pan, Ling Liu, Feifei Guan, Erwei Li, Jin Jin, Jinyang Li, Yongsheng Che, Gang Liu
ACS Chemical Biology.2018; 13(3): 703. CrossRef - Spectrum of Biological Activity of the Alternaria Fungi Isolated from the Phyllosphere of Herbaceous Plants
A. O. Berestetskiy, F. B. Gannibal, E. V. Minkovich, I. A. Osterman, D. R. Salimova, P. V. Sergiev, S. V. Sokornova
Microbiology.2018; 87(6): 806. CrossRef - Inhibitors of BRD4 Protein from a Marine-Derived Fungus Alternaria sp. NH-F6
Hui Ding, Dashan Zhang, Biao Zhou, Zhongjun Ma
Marine Drugs.2017; 15(3): 76. CrossRef
- The Role of a Dark Septate Endophytic Fungus, Veronaeopsis simplex Y34, in Fusarium Disease Suppression in Chinese Cabbage
-
Rida O. Khastini , Hiroyuki Ohta , Kazuhiko Narisawa
-
J. Microbiol. 2012;50(4):618-624. Published online August 25, 2012
-
DOI: https://doi.org/10.1007/s12275-012-2105-6
-
-
44
View
-
0
Download
-
35
Scopus
-
Abstract
-
The soil-inhabiting fungal pathogen Fusarium oxysporum has been an increasing threat to Chinese cabbage (Brassica campestris L.). A dark septate endophytic fungus, Veronaeopsis simplex Y34, isolated from Yaku Island, Japan, was evaluated in vitro for the ability to suppress Fusarium disease. Seedlings grown in the presence of the endophyte showed a 71% reduction in Fusarium wilt disease and still had good growth. The disease control was achieved through a synergetic effect involving a mechanical resistance created by a dense network of V. simplex Y34 hyphae, which colonized the host root, and siderophore production acting indirectly to induce a resistance mechanism in the plant. Changes in the relative abundance of the fungal communities in the soil as determined by fluorescently labelled T-RFs (terminal restriction fragments), appeared 3 weeks after application of the fungus. Results showed the dominance of V. simplex Y34, which became established in the rhizosphere and out-competed F. oxysporum.
- Identification and Functional Analysis of a Gene Encoding β-Glucosidase from the Brown-Rot Basidiomycete Fomitopsis palustris
-
Hwang-Woo Ji , Chang-Jun Cha
-
J. Microbiol. 2010;48(6):808-813. Published online January 9, 2011
-
DOI: https://doi.org/10.1007/s12275-010-0482-2
-
-
38
View
-
0
Download
-
7
Scopus
-
Abstract
-
The brown-rot basidiomycete Fomitopsis palustris is known to degrade crystalline cellulose (Avicel) and produce three major cellulases, exoglucanases, endoglucanases, and β-glucosidases. A novel β-glucosidase designated as Cel3A was identified from F. palustris grown at the expense of Avicel. The deduced amino acid sequence of Cel3A showed high homology with those of other fungal β-glucosidases that belong to glycosyl hydrolase (GH) family 3. The sequence analysis also indicated that Cel3A contains the N- and C-terminal domains of GH family 3 and Asp-209 was conserved as a catalytic nucleophile. The cloned gene was successfully expressed in the yeast Pichia pastoris and the recombinant protein exhibited β-glucosidase activity with cellobiose and some degree of thermostability. Considering the size and sequence of the protein, the β-glucosidase identified in this study is different from the protein purified directly from F. palustris in the previous study. Our results suggest that the fungus possesses at least two β-glucosidase genes.
- Production, Partial Characterization, and Immobilization in Alginate Beads of an Alkaline Protease from a New Thermophilic Fungus Myceliophthora sp.
-
Letícia Maria Zanphorlin , Fernanda Dell Antonio Facchini , Filipe Vasconcelos , Rafaella Costa Bonugli-Santos , André Rodrigues , Lara Durães Sette , Eleni Gomes , Gustavo Orlando Bonilla-Rodriguez
-
J. Microbiol. 2010;48(3):331-336. Published online June 23, 2010
-
DOI: https://doi.org/10.1007/s12275-010-9269-8
-
-
38
View
-
0
Download
-
34
Scopus
-
Abstract
-
Thermophilic fungi produce thermostable enzymes which have a number of applications, mainly in biotechnological processes. In this work, we describe the characterization of a protease produced in solidstate (SSF) and submerged (SmF) fermentations by a newly isolated thermophilic fungus identified as a putative new species in the genus Myceliophthora. Enzyme-production rate was evaluated for both fermentation processes, and in SSF, using a medium composed of a mixture of wheat bran and casein, the proteolytic output was 4.5-fold larger than that obtained in SmF. Additionally, the peak of proteolytic activity was obtained after 3 days for SSF whereas for SmF it was after 4 days. The crude enzyme obtained by both
SSF and SmF displayed similar optimum temperature at 50°C, but the optimum pH shifted from 7 (SmF) to 9 (SSF). The alkaline protease produced through solid-state fermentation (SSF), was immobilized on beads of calcium alginate, allowing comparative analyses of free and immobilized proteases to be carried out. It was
observed that both optimum temperature and thermal stability of the immobilized enzyme were higher than for the free enzyme. Moreover, the immobilized enzyme showed considerable stability for up to 7 reuses.
- Effect of Fungal Pellet Morphology on Enzyme Activities Involved in Phthalate Degradation
-
Young-Mi Kim , Hong-Gyu Song
-
J. Microbiol. 2009;47(4):420-424. Published online September 9, 2009
-
DOI: https://doi.org/10.1007/s12275-009-0051-8
-
-
36
View
-
0
Download
-
27
Scopus
-
Abstract
-
Pellet size of white rot fungus, Pleurotus ostreatus may affect the secretion of its degradative enzymes and accompanying biodegrading capability, but could be controlled by several physical culture conditions in liquid culture. The pellet size of P. ostreatus was affected by the volume of inoculum, flask, and medium, but the agitation speed was the most important control factor. At the lower agitation speed of 100 rpm, the large pellets were formed and the laccase activity was higher than that of small pelleted culture at 150 rpm, which might be due to loose intrapellet structure. However, the biodegradation rates of benzylbutylphthalate and dimethylphthalate were higher in the small pelleted culture, which indicated the involvement of other degradative enzyme rather than laccase. The activity of esterase which catalyzes the nonphenolic compounds before the reaction of ligninolytic enzymes was higher in the small pelleted culture, and coincided with the degradation pattern of phthalates. This study suggests the optimization of pellet morphology and subsequent secretion of degradative enzymes is necessary for the efficient removal of recalcitrants by white rot fungi.
- Isolation and Identification of an Anticancer Drug, Taxol from Phyllosticta tabernaemontanae, a Leaf Spot Fungus of an Angiosperm, Wrightia tinctoria
-
Rangarajulu Senthil Kumaran , Johnpaul Muthumary , Byung-Ki Hur
-
J. Microbiol. 2009;47(1):40-49. Published online February 20, 2009
-
DOI: https://doi.org/10.1007/s12275-008-0127-x
-
-
42
View
-
0
Download
-
43
Scopus
-
Abstract
-
Phyllosticta tabernaemontanae, a leaf spot fungus isolated from the diseased leaves of Wrightia tinctoria, showed the production of taxol, an anticancer drug, on modified liquid medium (M1D) and potato dextrose broth (PDB) medium in culture for the first time. The presence of taxol was confirmed by spectroscopic and chromatographic methods of analysis. The amount of taxol produced by this fungus was quantified using high performance liquid chromatography (HPLC). The maximum amount of taxol production was recorded in the fungus grown on M1D medium (461 ug/L) followed by PDB medium (150 ug/L). The production rate was increased to 9.2x103 fold than that found in the culture broth of earlier reported fungus, Taxomyces andreanae. The results designate that P. tabernaemontanae is an excellent candidate for taxol production. The fungal taxol extracted also showed a strong cytotoxic activity in the in vitro culture of tested human cancer cells by apoptotic assay.
- Purification and Characterization of Laccase from the White Rot Fungus Trametes versicolor
-
Moon-Jeong Han , Hyoung-Tae Choi , Hong-Gyu Song
-
J. Microbiol. 2005;43(6):555-560.
-
DOI: https://doi.org/2290 [pii]
-
-
Abstract
-
Laccase is one of the ligninolytic enzymes of white rot fungus Trametes versicolor 951022, a strain first isolated in Korea. This laccase was purified 209-fold from culture fluid with a yield of 6.2% using ethanol precipitation, DEAE-Sepharose, Phenyl-Sepharose, and Sephadex G-100 chromatography. T. versicolor 951022 excretes a single monomeric laccase showing a high specific activity of 91,443 U/mg for 2,2''-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) as a substrate. The enzyme has a molecular mass of approximately 97 kDa as determined by SDS-PAGE, which is larger than those of other laccases reported. It exhibits high enzyme activity over broad pH and temperature ranges with optimum activity at pH 3.0 and a temperature of 50oC. The Km value of the enzyme for substrate ABTS is 12.8 M and its corresponding Vmax value is 8125.4 U/mg. The specific activity and substrate affinity of this laccase are higher than those of other white rot fungi, therefore, it may be potentially useful for industrial purposes.
- Transformation and Mutagenesis of the Nematode-trapping Fungus Monacrosporium sphaeroides by Restriction Enzyme-mediated Integration (REMI)
-
Xu Jin , Ming-He Mo , Zhou Wei , Xiao-Wei Huang , Ke-Qin Zhang
-
J. Microbiol. 2005;43(5):417-423.
-
DOI: https://doi.org/2281 [pii]
-
-
Abstract
-
In this study, the nematode-trapping fungus, Monacrosporium sphaeroides, was transformed with a plasmid harboring the hygromycin B phosphotransferase gene, via restriction enzyme-mediated integration (REMI). Frequencies of up to 94 transformants g-1 per linearized plasmid DNA were obtained by optimizing the PEG concentration, as well as the category and quantity of the added restriction enzyme. 90% of the transformants were determined to be stable for drug resistance when 20 randomly selected transformants were tested. Southern analyses revealed that the transforming DNA was integrated into the M. sphaeroides genome either with or without rearrangement. Five mitotic stable mutant strains were obtained using this approach, all of which had been altered with regard to sporulation capacity and pathogenicity toward nematodes. Southern blot analyses of the five mutants revealed that foreign plasmid DNA had integrated into the genome. Three of the mutants, Tms2316, Tms3583 and Tms1536, exhibited integration at a single location, whereas the remaining two, Tms32 and Tms1913, manifested integration at double or multiple locations. Our results suggest that the transformation of M. sphaeroides via REMI will facilitate insertional mutagenesis, the functional analysis of a variety of genes, and the tagging or cloning of genes of interest.
- Establishment of a Micro-Particle Bombardment Transformation System for Dunaliella salina
-
Congping Tan , Song Qin , Qun Zhang , Peng Jiang , Fangqing Zhao
-
J. Microbiol. 2005;43(4):361-365.
-
DOI: https://doi.org/2253 [pii]
-
-
Abstract
-
In this study, we chronicle the establishment of a novel transformation system for the unicellular marine green alga, Dunaliella salina. We introduced the CaMV35S promoter-GUS construct into D. salina with a PDS1000/He micro-particle bombardment system. Forty eight h after transformation, via histochemical staining, we observed the transient expression of GUS in D. salina cells which had been bombarded under rupture-disc pressures of 450 psi and 900 psi. We observed no GUS activity in either the negative or the blank controls. Our findings indicated that the micro-particle bombardment method constituted a feasible approach to the genetic transformation of D. salina. We also conducted tests of the cells'' sensitivity to seven antibiotics and one herbicide, and our results suggested that 20 ug/ml of Basta could inhibit cell growth completely. The bar gene, which encodes for phosphinothricin acetyltransferase and confers herbicide tolerance, was introduced into the cells via the above established method. The results of PCR and PCR-Southern blot analyses indicated that the gene was successfully integrated into the genome of the transformants.
- Purification and Characterization of Thermostable β-Glucosidase from the Brown-Rot Basidiomycete Fomitopsis palustris Grown on Microcrystalline Cellulose
-
Jeong-Jun Yoon , Ki-Yeon Kim , Chang-Jun Cha
-
J. Microbiol. 2008;46(1):51-55.
-
DOI: https://doi.org/10.1007/s12275-007-0230-4
-
-
38
View
-
0
Download
-
51
Scopus
-
Abstract
-
An extracellular β-glucosidase was purified 154-fold to electrophoretic homogeneity from the brown-rot basidiomycete Fomitopsis palustris grown on 2.0% microcrystalline cellulose. SDS-polyacrylamide gel electrophoresis gel gave a single protein band and the molecular mass of purified enzyme was estimated to be approximately 138 kDa. The amino acid sequences of the proteolytic fragments determined by nano-LC- MS/MS suggested that the protein has high homology with fungal β-glucosidases that belong to glycosyl hydrolase family 3. The Kms for p-nitorophenyl-β-D-glucoside (p-NPG) and cellobiose hydrolyses were 0.117 and 4.81 mM, and the Kcat values were 721 and 101.8 per sec, respectively. The enzyme was competitively inhibited by both glucose (Ki= 0.35 mM) and gluconolactone (Ki= 0.008 mM), when p-NPG was used as substrate. The optimal activity of the purified β-glucosidase was observed at pH 4.5 and 70°C. The F. palustris protein exhibited half-lives of 97 h at 55°C and 15 h at 65°C, indicating some degree of thermostability. The enzyme has high activity against p-NPG and cellobiose but has very little or no activity against p-nitrophenyl-β-lactoside, p-nitrophenyl-β-xyloside, p-nitrophenyl-α-arabinofuranoside, xylan, and carboxymethyl cellulose. Thus, our results revealed that the β-glucosidase from F. palustris can be classified as an aryl-β-glucosidase with cellobiase activity.