Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
12 "Joon Yong Kim"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Research Article
Virgibacillus saliphilus sp. nov. and Virgibacillus salidurans sp. nov., isolated from kimchi
Young Joon Oh, Joon Yong Kim, Min-Sung Kwon, Sulhee Lee, Sang-Pil Choi, Hak-Jong Choi
J. Microbiol. 2025;63(1):e.2501001.   Published online January 24, 2025
DOI: https://doi.org/10.71150/jm.2501001
  • 550 View
  • 59 Download
AbstractAbstract PDFSupplementary Material

This study aimed to provide a taxonomic description of two bacterial strains, NKC19-3T and NKC19-16T, isolated from commercially produced kimchi obtained from various regions within the Republic of Korea. Both strains were rod-shaped, gram-stain-positive, facultatively anaerobic, and displayed positive reactions for oxidase and catalase. Additionally, these bacteria were motile, halophilic (salt-tolerant), and proliferated under alkaline conditions. Genetically, both strains showed 98.0% similarity in their 16S rRNA gene sequences and were most closely related to Virgibacillus natechei FarDT, with 96.5 and 96.8% sequence similarity, respectively. ANI values indicated that the two novel strains were distinct from V. natechei FarDT, as they were below the species demarcation threshold. The ANI value between strains NKC19-3ᵀ and NKC19-16ᵀ was 84.64–84.75%, and the values between these strains and other related strains did not exceed 80.0%, further supporting their classification as novel species. Phylogenetic analysis revealed that strains NKC19-3T and NKC19-16T formed a distinct branch within the genus Virgibacillus, clearly distinguishing them from other species in the same genus. Regarding genomic characteristics, the GC content was 38.9% for strain NKC19-3T and 39.5% for strain NKC19-16T. The genome of strain NKC19-3T had a size of approximately 4.1 Mb and contained 3,785 protein-coding genes (CDSs). Strain NKC19-16T had a slightly smaller genome, approximately 3.9 Mb in size and harbored 3,726 CDSs. The polar lipid profiles of strains NKC19-3ᵀ and NKC19-16ᵀ included diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), glycolipids (GL), and an unidentified lipid (L). The predominant fatty acids of both strains were anteiso-C15:0 and anteiso-C17:0. Considering the comprehensive analysis encompassing phenotypic, genomic, phylogenetic, and chemotaxonomic data, strains NKC19-3T and NKC19-16T are proposed to represent two novel species within the genus Virgibacillus. The suggested names for these species are Virgibacillus saliphilus sp. nov. (type strain NKC19-3T, also referred to as KACC 22326T and DSM 112707T) and Virgibacillus salidurans sp. nov. (type strain NKC19-16T, also referred to as KACC 22327T and DSM 112708T).

Journal Articles
Brachybacterium kimchii sp. nov. and Brachybacterium halotolerans subsp. kimchii subsp. nov., isolated from the Korean fermented vegetables, kimchi, and description of Brachybacterium halotolerans subsp. halotolerans subsp. nov.
Yujin Kim , Yeon Bee Kim , Juseok Kim , Joon Yong Kim , Tae Woong Whon , Won-Hyong Chung , Eun-Ji Song , Young-Do Nam , Se Hee Lee , Seong Woon Roh
J. Microbiol. 2022;60(7):678-688.   Published online July 4, 2022
DOI: https://doi.org/10.1007/s12275-022-1581-6
  • 54 View
  • 0 Download
  • 2 Web of Science
  • 3 Crossref
AbstractAbstract
Two Gram-stain-positive, oxidase-negative, catalase-positive, and coccus-shaped bacterial strains, designated CBA3104T and CBA3105T, were isolated from kimchi. Strain CBA3104T and CBA3105T grew at 10–35°C (optimum, 25°C and 30°C, respectively), at pH 6.0–8.5 (optimum, pH 6.5), and in the presence of 0–15% (w/v) NaCl (optimum, 5%). A phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CBA3104T formed a distinct phylogenetic lineage within the genus Brachybacterium whereas strain CBA3105T was closely positioned with Brachybacterium halotolerans MASK1Z-5T. The 16S rRNA gene sequence similarity between strains CBA3104T and CBA3105T was 99.9%, but ANI and dDDH values between strains CBA3104T and CBA3105T were 93.61% and 51.5%, respectively. Strain CBA3104T showed lower ANI and dDDH values than species delineation against three closely related strains and type species of the genus Brachybacterium, however, strain CBA3105T showed 96.63% ANI value and 69.6% dDDH value with Brachybacterium halotolerans MASK1Z-5T. Among biochemical analysis results, strain CBA3104T could uniquely utilize bromo-succinic acid whereas only strain CBA3105T was positive for alkaline phosphatase and α-fucosidase among two novel strains, closely related strains, and type species of the genus Brachybacterium. Compared with strain CBA3105T and Brachybacterium halotolerans JCM 34339T, strain CBA3105T was differentially positive for acid production of D-arabinose, D-adonitol, and potassium 5-ketogluconate and enzyme activity of β-glucuronidase. Both strains contained menaquinone-7 as the dominant quinone. The cell-wall peptidoglycan of two novel strains contained meso-diaminopimelic acid. The major fatty acids of strains CBA3104T and CBA3105T were anteiso-C15:0, anteiso-C17:0, and iso-C16:0. The major polar lipids of both strains were phosphatidylglycerol and diphosphatidylglycerol. Strain CBA3104T possessed a uniquely higher abundance of tRNA (97 tRNAs) than four Brachybacterium strains used for comparative taxonomic analysis (54–62 tRNAs). Both the CBA3104T and CBA3105T strain harbored various oxidoreductase, transferase, hydrolase, and lyase as strain-specific functional genes compared to closely related strains and Brachybacterium type species. The results of biochemical/physiological, chemotaxonomic, and genomic analyses demonstrated that strains CBA3104T and CBA3105T represent a novel species of the genus Brachybacterium and a novel subspecies of B. halotolerans, respectively, for which the names Brachybacterium kimchii sp. nov. and B. halotolerans subsp. kimchii subsp. nov. are proposed. The type strains of the novel species and the novel subspecies are CBA3104T (= KCCM 43417T = JCM 34759T) and CBA3105T (= KCCM 43418T = JCM 34760T), respectively.

Citations

Citations to this article as recorded by  
  • Metagenomic Insights into the Taxonomic and Functional Features of Traditional Fermented Milk Products from Russia
    Alexander G. Elcheninov, Kseniya S. Zayulina, Alexandra A. Klyukina, Mariia K. Kremneva, Ilya V. Kublanov, Tatiana V. Kochetkova
    Microorganisms.2023; 12(1): 16.     CrossRef
  • Validation List no. 208. Valid publication of new names and new combinations effectively published outside the IJSEM
    Aharon Oren, George M. Garrity
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • Complete Genome Sequence of Brachybacterium sp. Strain NBEC-018, Isolated from Nematode-Infected Potatoes
    Ling Chen, Yueying Wang, Nanxi Liu, Lei Zhu, Yong Min, Yimin Qiu, Yuxi Tian, Xiaoyan Liu, David Rasko
    Microbiology Resource Announcements.2022;[Epub]     CrossRef
Salicibibacter cibarius sp. nov. and Salicibibacter cibi sp. nov., two novel species of the family Bacillaceae isolated from kimchi
Young Joon Oh , Joon Yong Kim , Seul Ki Lim , Min-Sung Kwon , Hak-Jong Choi
J. Microbiol. 2021;59(5):460-466.   Published online April 28, 2021
DOI: https://doi.org/10.1007/s12275-021-0513-1
  • 51 View
  • 0 Download
  • 1 Crossref
AbstractAbstract
To date, all species in the genus Salicibibacter have been isolated in Korean commercial kimchi. We aimed to describe the taxonomic characteristics of two strains, NKC5-3T and NKC21-4T, isolated from commercial kimchi collected from various regions in the Republic of Korea. Cells of these strains were rod-shaped, Gram-positive, aerobic, oxidase- and catalase- positive, non-motile, halophilic, and alkalitolerant. Both strains, unlike other species of the genus Salicibibacter, could not grow without NaCl. Strains NKC5-3T and NKC21-4T could tolerate up to 25.0% (w/v) NaCl (optimum 10%) and grow at pH 7.0–10.0 (optimum 8.5) and 8.0–9.0 (optimum 8.5), respectively; they showed 97.1% 16S rRNA gene sequence similarity to each other and were most closely related to S. kimchii NKC1-1T (97.0% and 96.8% similarity, respectively). The genome of strain NKC5-3T was nearly 4.6 Mb in size, with 4,456 protein-coding sequences (CDSs), whereas NKC21-4T genome was nearly 3.9 Mb in size, with 3,717 CDSs. OrthoANI values between the novel strains and S. kimchii NKC1-1T were far lower than the species demarcation threshold. NKC5-3T and NKC21-4T clustered together to form branches that were distinct from the other Salicibibacter species. The major fatty acids in these strains were anteiso-C15:0 and anteiso-C17:0, and the predominant menaquinone was menaquinone-7. The polar lipids of NKC5-3T included diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), and five unidentified phospholipids (PL), and those of NKC21-4T included DPG, PG, seven unidentified PLs, and an unidentified lipid. Both isolates had DPG, which is the first case in the genus Salicibibacter. The genomic G + C content of strains NKC5-3T and NKC21-4T was 44.7 and 44.9 mol%, respectively. Based on phenotypic, genomic, phylogenetic, and chemotaxonomic analyses, strains NKC5-3T (= KACC 22040T = DSM 111417T) and NKC21-4T (= KACC 22041T = DSM 111418T) represent two novel species of the genus Salicibibacter, for which the names Salicibibacter cibarius sp. nov. and Salicibibacter cibi sp. nov. are proposed.

Citations

Citations to this article as recorded by  
  • Valid publication of new names and new combinations effectively published outside the IJSEM
    Aharon Oren, George M. Garrity
    International Journal of Systematic and Evolutionary Microbiology .2021;[Epub]     CrossRef
Review
Omics in gut microbiome analysis
Tae Woong Whon , Na-Ri Shin , Joon Yong Kim , Seong Woon Roh
J. Microbiol. 2021;59(3):292-297.   Published online February 23, 2021
DOI: https://doi.org/10.1007/s12275-021-1004-0
  • 45 View
  • 0 Download
  • 38 Web of Science
  • 38 Crossref
AbstractAbstract
Our understanding of the interactions between microbial communities and their niche in the host gut has improved owing to recent advances in environmental microbial genomics. Integration of metagenomic and metataxonomic sequencing data with other omics data to study the gut microbiome has become increasingly common, but downstream analysis after data integration and interpretation of complex omics data remain challenging. Here, we review studies that have explored the gut microbiome signature using omics approaches, including metagenomics, metataxonomics, metatranscriptomics, and metabolomics. We further discuss recent analytics programs to analyze and integrate multi-omics datasets and further utilization of omics data with other advanced techniques, such as adaptive immune receptor repertoire sequencing, microbial culturomics, and machine learning, to evaluate important microbiome characteristics in the gut.

Citations

Citations to this article as recorded by  
  • Effect of alfalfa supplementary change dietary non-fibrous carbohydrate (NFC) to neutral detergent fiber (NDF) ratio on rumen fermentation and microbial function in Gansu alpine fine wool sheep ( Ovis aries )
    Qian Chen, Yun-feng Cui, Zhao-xi Zhang, Fu-cheng Jiang, Xiang-yu Meng, Jin-jin Li, Da-yong Cui, Jian-lei Jia
    Animal Biotechnology.2024;[Epub]     CrossRef
  • Effect of Pharmaceutically Active Antibiotics on Gut Metagenome of Mother and Infant
    Ruchi Yadav
    Journal of Preventive, Diagnostic and Treatment Strategies in Medicine.2024; 3(4): 284.     CrossRef
  • Effects of gnotobiotic fermentation on global gene expression of germ‐free vegetables
    Yujin Kim, Hojun Sung, Yeon Bee Kim, Hye Seon Song, Mi‐Ja Jung, Jisu Lee, Min Ji Lee, Se Hee Lee, Seong Woon Roh, Jin‐Woo Bae, Tae Woong Whon
    Physiologia Plantarum.2024;[Epub]     CrossRef
  • Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities
    Bernhard Jandl, Satish Dighe, Christoph Gasche, Athanasios Makristathis, Markus Muttenthaler, Christopher Staley, Giovanni Di Bonaventura
    Clinical Microbiology Reviews.2024;[Epub]     CrossRef
  • The role of insect gut microbiota in host fitness, detoxification and nutrient supplementation
    U. Shamjana, Deepa Azhchath Vasu, Preety Sweta Hembrom, Karunakar Nayak, Tony Grace
    Antonie van Leeuwenhoek.2024;[Epub]     CrossRef
  • Effect of florfenicol administered through feed on Atlantic salmon (Salmo salar) gut and its microbiome
    Giovanna Monticelli, Joseph H. Bisesi, Jason T. Magnuson, Daniel Schlenk, Carlos Zarza, David Peggs, Daniela M. Pampanin
    Aquaculture.2024; 580: 740310.     CrossRef
  • Advances in Culturomics Research on the Human Gut Microbiome: Optimizing Medium Composition and Culture Techniques for Enhanced Microbial Discovery
    Hye Seon Song, Yeon Bee Kim, Joon Yong Kim, Seong Woon Roh, Tae Woong Whon
    Journal of Microbiology and Biotechnology.2024; 34(4): 757.     CrossRef
  • Deciphering the microbial map and its implications in the therapeutics of neurodegenerative disorder
    Shrutikirti Vashishth, Rashmi K. Ambasta, Pravir Kumar
    Ageing Research Reviews.2024; 100: 102466.     CrossRef
  • Emerging importance of stool preservation methods in OMICS studies with special focus on cancer biology
    Parul Mehra, Anil Kumar
    Cell Biochemistry and Function.2024;[Epub]     CrossRef
  • Gut microbiota and metabolic modulation by supplementation of polysaccharide-producing Bacillus licheniformis from Tibetan Yaks: A comprehensive multi-omics analysis
    Zhibo Zeng, Chuxian Quan, Shimeng Zhou, Saisai Gong, Mudassar Iqbal, Muhammad Fakhar-e-Alam Kulyar, Shah Nawaz, Kewei Li, Jiakui Li
    International Journal of Biological Macromolecules.2024; 254: 127808.     CrossRef
  • The Microbiome Matters: Its Impact on Cancer Development and Therapeutic Responses
    In-Young Chung, Jihyun Kim, Ara Koh
    Journal of Microbiology.2024; 62(3): 137.     CrossRef
  • Deciphering the gut microbiome: The revolution of artificial intelligence in microbiota analysis and intervention
    Mohammad Abavisani, Alireza Khoshrou, Sobhan Karbas Foroushan, Negar Ebadpour, Amirhossein Sahebkar
    Current Research in Biotechnology.2024; 7: 100211.     CrossRef
  • Should Routine Diagnostics Implement Gut Microbiota Analysis?
    Giuseppe Guido Maria Scarlata, Ludovico Abenavoli
    The International Journal of Gastroenterology and Hepatology Diseases.2024;[Epub]     CrossRef
  • Microbiome and pancreatic cancer: time to think about chemotherapy
    Juliana de Castilhos, Katharina Tillmanns, Jana Blessing, Arnelyn Laraño, Vadim Borisov, Christoph K. Stein-Thoeringer
    Gut Microbes.2024;[Epub]     CrossRef
  • Microbiota in Irritable Bowel Syndrome and Endometriosis: Birds of a Feather Flock Together—A Review
    Noemi Salmeri, Emanuele Sinagra, Carolina Dolci, Giovanni Buzzaccarini, Giulio Sozzi, Miriam Sutera, Massimo Candiani, Federica Ungaro, Luca Massimino, Silvio Danese, Francesco Vito Mandarino
    Microorganisms.2023; 11(8): 2089.     CrossRef
  • Revelation of the sciences of traditional foods
    Zhen Jia, Boce Zhang, Arnav Sharma, Nathalie S. Kim, Sonia M. Purohit, Madison M. Green, Michelle R. Roche, Emma Holliday, Hongda Chen
    Food Control.2023; 145: 109392.     CrossRef
  • The gut microbiota: A new perspective for tertiary prevention of hepatobiliary and gallbladder diseases
    Xiaoyu Huang, Yi Yang, Xueli Li, Xiaoya Zhu, Dan Lin, Yueran Ma, Min Zhou, Xiangyi Cui, Bingyu Zhang, Dongmei Dang, Yuhong Lü, Changwu Yue
    Frontiers in Nutrition.2023;[Epub]     CrossRef
  • Environmental factors and gut microbiota: Toward better conservation of deer species
    Yu Wang, Bo Xu, Huan Chen, Fang Yang, Jinlin Huang, Xin’an Jiao, Yunzeng Zhang
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Potential role of gut microbes in the efficacy and toxicity of immune checkpoints inhibitors
    Jingxin Ma, Qi Wei, Xin Cheng, Jie Zhang, Zhongtao Zhang, Jianrong Su
    Frontiers in Pharmacology.2023;[Epub]     CrossRef
  • Microbiota-Gut-Brain Axis in Neurological Disorders: From Leaky Barriers Microanatomical Changes to Biochemical Processes
    Irene Neri, Elisa Boschetti, Matilde Yung Follo, Roberto De Giorgio, Lucio Ildebrando Cocco, Lucia Manzoli, Stefano Ratti
    Mini-Reviews in Medicinal Chemistry.2023; 23(3): 307.     CrossRef
  • Effects of microbial-derived biotics (meta/pharma/post-biotics) on the modulation of gut microbiome and metabolome; general aspects and emerging trends
    Alireza Sadeghi, Maryam Ebrahimi, Mohammad Saeed Kharazmi, Seid Mahdi Jafari
    Food Chemistry.2023; 411: 135478.     CrossRef
  • Interkingdom interactions between Pseudomonas aeruginosa and Candida albicans affect clinical outcomes and antimicrobial responses
    Lisa J Kahl, Nina Stremmel, M Alejandra Esparza-Mora, Rachel M Wheatley, R Craig MacLean, Markus Ralser
    Current Opinion in Microbiology.2023; 75: 102368.     CrossRef
  • Molecular Insights Into the Role of Gut Microbiota in Antibiotic Therapy Selection and Resistance Mitigation
    Mihaela Andreescu
    Cureus.2023;[Epub]     CrossRef
  • Gut Microbiota Composition and Cardiovascular Disease: A Potential New Therapeutic Target?
    Martina Belli, Lucy Barone, Susanna Longo, Francesca Romana Prandi, Dalgisio Lecis, Rocco Mollace, Davide Margonato, Saverio Muscoli, Domenico Sergi, Massimo Federici, Francesco Barillà
    International Journal of Molecular Sciences.2023; 24(15): 11971.     CrossRef
  • Old Folks, Bad Boon: Antimicrobial Resistance in the Infant Gut Microbiome
    Silvia Saturio, Alejandra Rey, Anna Samarra, Maria Carmen Collado, Marta Suárez, Laura Mantecón, Gonzalo Solís, Miguel Gueimonde, Silvia Arboleya
    Microorganisms.2023; 11(8): 1907.     CrossRef
  • A New Biomarker Profiling Strategy for Gut Microbiome Research: Valid Association of Metabolites to Metabolism of Microbiota Detected by Non-Targeted Metabolomics in Human Urine
    Sijia Zheng, Lina Zhou, Miriam Hoene, Andreas Peter, Andreas L. Birkenfeld, Cora Weigert, Xinyu Liu, Xinjie Zhao, Guowang Xu, Rainer Lehmann
    Metabolites.2023; 13(10): 1061.     CrossRef
  • Causal discovery for the microbiome
    Jukka Corander, William P Hanage, Johan Pensar
    The Lancet Microbe.2022; 3(11): e881.     CrossRef
  • Play the plug: How bacteria modify recognition by host receptors?
    Suma Tiruvayipati, Dharjath S. Hameed, Niyaz Ahmed
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Intestinal virome: An important research direction for alcoholic and nonalcoholic liver diseases
    Yan Li, Wen-Cheng Liu, Bing Chang
    World Journal of Gastroenterology.2022; 28(26): 3279.     CrossRef
  • Regulator of RNase E activity modulates the pathogenicity of Salmonella Typhimurium
    Jaejin Lee, Eunkyoung Shin, Ji-Hyun Yeom, Jaeyoung Park, Sunwoo Kim, Minho Lee, Kangseok Lee
    Microbial Pathogenesis.2022; 165: 105460.     CrossRef
  • Long-term high loading intensity of aerobic exercise improves skeletal muscle performance via the gut microbiota-testosterone axis
    Lidong Zhang, Hedong Lang, Li Ran, Guoliang Tian, Hui Shen, Jundong Zhu, Qianyong Zhang, Long Yi, Mantian Mi
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • In sickness and in health: Insights into the application of omics in aquaculture settings under a microbiological perspective
    Anna Luiza Bauer Canellas, Wellington Felipe Costa, Jéssyca Freitas-Silva, Isabelle Rodrigues Lopes, Bruno Francesco Rodrigues de Oliveira, Marinella Silva Laport
    Aquaculture.2022; 554: 738132.     CrossRef
  • The gut microbiome in human health and disease—Where are we and where are we going? A bibliometric analysis
    Zhiqiang Huang, Kun Liu, Wenwen Ma, Dezhi Li, Tianlu Mo, Qing Liu
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Standards for Collection, Preservation, and Transportation of Fecal Samples in TCM Clinical Trials
    Wenquan Su, Yawei Du, Fengmei Lian, Hui Wu, Xinrong Zhang, Wenli Yang, Yunfeng Duan, Yuanming Pan, Weijng Liu, Aiming Wu, Bowen Zhao, Chongming Wu, Shengxian Wu
    Frontiers in Cellular and Infection Microbiology.2022;[Epub]     CrossRef
  • Global research trends on the links between the gut microbiota and diabetes between 2001 and 2021: A bibliometrics and visualized study
    Boxun Zhang, Zishan Jin, Tiangang Zhai, Qiyou Ding, Haoyu Yang, Jia Wang, Lili Zhang, Linhua Zhao
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Regulator of ribonuclease activity modulates the pathogenicity of Vibrio vulnificus
    Jaejin Lee, Eunkyoung Shin, Jaeyeong Park, Minho Lee, Kangseok Lee
    Journal of Microbiology.2021; 59(12): 1133.     CrossRef
  • Omics-based microbiome analysis in microbial ecology: from sequences to information
    Jang-Cheon Cho
    Journal of Microbiology.2021; 59(3): 229.     CrossRef
  • Genome-Scale Metabolic Modeling Enables In-Depth Understanding of Big Data
    Anurag Passi, Juan D. Tibocha-Bonilla, Manish Kumar, Diego Tec-Campos, Karsten Zengler, Cristal Zuniga
    Metabolites.2021; 12(1): 14.     CrossRef
Journal Articles
Lentibacillus cibarius sp. nov., isolated from kimchi, a Korean fermented food
Young Joon Oh , Joon Yong Kim , Hee Eun Jo , Hyo Kyeong Park , Seul Ki Lim , Min-Sung Kwon , Hak-Jong Choi
J. Microbiol. 2020;58(5):387-394.   Published online April 11, 2020
DOI: https://doi.org/10.1007/s12275-020-9507-7
  • 55 View
  • 0 Download
  • 10 Web of Science
  • 11 Crossref
AbstractAbstract
Two bacterial strains designated NKC220-2T and NKC851-2 were isolated from commercial kimchi from different areas in Korea. The strains were Gram-positive, aerobic, oxidaseand catalase-positive, rod-shaped, spore-forming, non-motile, and halophilic bacteria. Both strains grew without NaCl, unlike type species in the genus Lentibacillus. The optimal pH for growth was 8.0, higher than that of the type species in the genus Lentibacillus, although growth was observed at pH 5.5–9.0. 16S rRNA gene sequence-based phylogenetic analysis indicated that the two strains (99.3–99.9% similarity) are grouped within the genus Lentibacillus and most closely related to Lentibacillus juripiscarius IS40-3T (97.4–97.6% similarity) isolated from fish sauce in Thailand. OrthoANI value between two novel strains and Lentibacillus lipolyticus SSKP1- 9T (79.5–79.6% similarity) was far lower than the species demarcation threshold. Comparative genomic analysis displayed differences between the two strains as well as among other strains belonging to Lentibacillus. Furthermore, each isolate had strain-specific groups of orthologous genes based on pangenome analysis. Genomic G + C contents of strains NKC- 220-2T and NKC851-2 were 41.9 and 42.2 mol%, respectively. The strains contained meso-diaminopimelic acid in their cell walls, and the major menaquinone was menaquinone-7. Phosphatidylglycerol, diphosphatidylglycerol, and an unidentified glycolipid, aminophospholipid, and phospholipid were the major polar lipid components of both strains. The major cellular fatty acids of the strains were anteiso-C15:0 and anteiso- C17:0. Based on phenotypic, genomic, phylogenetic, and chemotaxonomic features, strains NKC220-2T and NKC851-2 represent novel species of the genus Lentibacillus, for which the name Lentibacillus cibarius sp. nov. is proposed. The type strain is NKC220-2T (= KACC 21232T = JCM 33390T).

Citations

Citations to this article as recorded by  
  • Detection of the Microbial Composition of Some Commercial Fermented Liquid Products via Metagenomic Analysis
    Cansu Çelik Doğan, Hafize Tuğba Yüksel Dolgun, Serkan İkiz, Şükrü Kırkan, Uğur Parın
    Foods.2023; 12(19): 3538.     CrossRef
  • Lentibacillus daqui sp. nov., isolated from high-temperature Daqu, a starter for production of Chinese Jiang-flavour Baijiu
    Yuan Liang, Zhen-Ming Lu, Wei Shi, Lin-Huan Wu, Li-Juan Chai, Xiao-Juan Zhang, Su-Yi Zhang, Song-Tao Wang, Cai-Hong Shen, Zheng-Hong Xu
    International Journal of Systematic and Evolutionary Microbiology .2023;[Epub]     CrossRef
  • Occurrence of biogenic amines and their correlation with bacterial communities in the Ivorian traditional fermented fish adjuevan during the storage
    Marina Ghislaine Abré, Clémentine Amenan Kouakou-Kouamé, Florent Kouadio N’guessan, Corinne Teyssier, Didier Montet
    Folia Microbiologica.2023; 68(2): 257.     CrossRef
  • Description of Corynebacterium poyangense sp. nov., isolated from the feces of the greater white-fronted geese (Anser albifrons)
    Qian Liu, Guoying Fan, Kui Wu, Xiangning Bai, Xi Yang, Wentao Song, Shengen Chen, Yanwen Xiong, Haiying Chen
    Journal of Microbiology.2022; 60(7): 668.     CrossRef
  • Parasphingorhabdus cellanae sp. nov., isolated from the gut of a Korean limpet, Cellana toreuma
    Ji-Ho Yoo, Jeong Eun Han, June-Young Lee, Su-Won Jeong, Yun-Seok Jeong, Jae-Yun Lee, So-Yeon Lee, Hojun Sung, Euon Jung Tak, Hyun Sik Kim, Pil Soo Kim, Jee-Won Choi, Do-Yeon Kim, In Chul Jeong, Do-Hun Gim, Seo Min Kang, Jin-Woo Bae
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • Isolation and characterization of tick-borne Roseomonas haemaphysalidis sp. nov. and rodent-borne Roseomonas marmotae sp. nov.
    Wentao Zhu, Juan Zhou, Shan Lu, Jing Yang, Xin-He Lai, Dong Jin, Ji Pu, Yuyuan Huang, Liyun Liu, Zhenjun Li, Jianguo Xu
    Journal of Microbiology.2022; 60(2): 137.     CrossRef
  • The Methods of Digging for “Gold” within the Salt: Characterization of Halophilic Prokaryotes and Identification of Their Valuable Biological Products Using Sequencing and Genome Mining Tools
    Jakub Lach, Paulina Jęcz, Dominik Strapagiel, Agnieszka Matera-Witkiewicz, Paweł Stączek
    Genes.2021; 12(11): 1756.     CrossRef
  • Lentibacillus saliphilus. sp. nov., a moderately halophilic bacterium isolated from a saltern in Korea
    Yun Wang, Gang-Qiang Jiang, Hong-Ping Lin, Peng Sun, Hong-Yan Zhang, Dong-Mei Lu, Li-Yun Wang, Chang-Jin Kim, Shu-Kun Tang
    Archives of Microbiology.2021; 203(2): 621.     CrossRef
  • Salicibibacter cibarius sp. nov. and Salicibibacter cibi sp. nov., two novel species of the family Bacillaceae isolated from kimchi
    Young Joon Oh, Joon Yong Kim, Seul Ki Lim, Min-Sung Kwon, Hak-Jong Choi
    Journal of Microbiology.2021; 59(5): 460.     CrossRef
  • Flaviflexus ciconiae sp. nov., isolated from the faeces of the oriental stork, Ciconia boyciana
    Jae-Yun Lee, Woorim Kang, Pil Soo Kim, So-Yeon Lee, Na-Ri Shin, Hojun Sung, June-Young Lee, Ji-Hyun Yun, Yun-Seok Jeong, Jeong Eun Han, Mi-Ja Jung, Dong-Wook Hyun, Hyun Sik Kim, Euon Jung Tak, Jin-Woo Bae
    International Journal of Systematic and Evolutionary Microbiology.2020; 70(10): 5439.     CrossRef
  • List of new names and new combinations that have appeared in effective publications outside of the IJSEM and are submitted for valid publication
    Aharon Oren, George M. Garrity
    International Journal of Systematic and Evolutionary Microbiology .2019;[Epub]     CrossRef
Salicibibacter halophilus sp. nov., a moderately halophilic bacterium isolated from kimchi
Young Joon Oh , Joon Yong Kim , Hyo Kyeong Park , Ja-Young Jang , Seul Ki Lim , Min-Sung Kwon , Hak-Jong Choi
J. Microbiol. 2019;57(11):997-1002.   Published online October 28, 2019
DOI: https://doi.org/10.1007/s12275-019-9421-z
  • 56 View
  • 0 Download
  • 2 Web of Science
  • 3 Crossref
AbstractAbstract
A Gram-stain-positive, rod-shaped, alkalitolerant, and halophilic bacterium–designated as strain NKC3-5T–was isolated from kimchi that was collected from the Geumsan area in the Republic of Korea. Cells of isolated strain NKC3-5T were 0.5–0.7􍾘μm wide and 1.4–2.8 μm long. The strain NKC3-5T could grow at up to 20.0% (w/v) NaCl (optimum 10%), pH 6.5–10.0 (optimum pH 9.0), and 25–40°C (optimum 35°C). The cells were able to reduce nitrate under aerobic conditions, which is the first report in the genus Salicibibacter. The genome size and genomic G + C content of strain NKC3-5T were 3,754,174 bp and 45.9 mol%, respectively; it contained 3,630 coding sequences, 16S rRNA genes (six 16S, five 5S, and five 23S), and 59 tRNA genes. Phylogenetic analysis based on 16S rRNA showed that strain NKC- 3-5T clustered with bacterium Salicibibacter kimchii NKC1-1T, with a similarity of 96.2–97.6%, but formed a distinct branch with other published species of the family Bacillaceae. In addition, OrthoANI value between strain NKC3-5T and Salicibibacter kimchii NKC1-1T was far lower than the species demarcation threshold. Using functional genome annotation, the result found that carbohydrate, amino acid, and vitamin metabolism related genes were highly distributed in the genome of strain NKC3-5T. Comparative genomic analysis revealed that strain NKC3-5T had 716 pan-genome orthologous groups (POGs), dominated with carbohydrate metabolism. Phylogenomic analysis based on the concatenated core POGs revealed that strain NKC3-5T was closely related to Salicibibacter kimchii. The predominant polar lipids were phosphatidylglycerol and two unidentified lipids. Anteiso- C15:0, iso-C17:0, anteiso-C17:0, and iso-C15:0 were the major cellular fatty acids, and menaquinone-7 was the major isoprenoid quinone present in strain NKC3-5T. Cell wall peptidoglycan analysis of strain NKC3-5T showed that meso-diaminopimelic acid was the diagnostic diamino acid. The phenotypic, genomic, phylogenetic, and chemotaxonomic properties reveal that the strain represents a novel species of the genus Salicibibacter, for which the name Salicibibacter halophilus sp. nov. is proposed, with the type strain NKC3-5T (= KACC 21230T = JCM 33437T).

Citations

Citations to this article as recorded by  
  • Salicibibacter cibarius sp. nov. and Salicibibacter cibi sp. nov., two novel species of the family Bacillaceae isolated from kimchi
    Young Joon Oh, Joon Yong Kim, Seul Ki Lim, Min-Sung Kwon, Hak-Jong Choi
    Journal of Microbiology.2021; 59(5): 460.     CrossRef
  • The Methods of Digging for “Gold” within the Salt: Characterization of Halophilic Prokaryotes and Identification of Their Valuable Biological Products Using Sequencing and Genome Mining Tools
    Jakub Lach, Paulina Jęcz, Dominik Strapagiel, Agnieszka Matera-Witkiewicz, Paweł Stączek
    Genes.2021; 12(11): 1756.     CrossRef
  • List of new names and new combinations that have appeared in effective publications outside of the IJSEM and are submitted for valid publication
    Aharon Oren, George M. Garrity
    International Journal of Systematic and Evolutionary Microbiology .2019;[Epub]     CrossRef
Paracoccus jeotgali sp. nov., isolated from Korean salted and fermented shrimp
Juseok Kim , Joon Yong Kim , Hye Seon Song , In-Tae Cha , Seong Woon Roh , Se Hee Lee
J. Microbiol. 2019;57(6):444-449.   Published online May 27, 2019
DOI: https://doi.org/10.1007/s12275-019-8704-8
  • 54 View
  • 0 Download
  • 6 Web of Science
  • 6 Crossref
AbstractAbstract
A Gram-stain-negative and facultatively aerobic bacterium, designated as strain CBA4604T, was isolated from a traditional Korean salted and fermented shrimp food (saeu-jeot). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain CBA4604T formed a clearly distinct phyletic lineage from closely related species within the genus Paracoccus. Strain CBA4604T was the most closely related to P. koreensis Ch05T (97.5% 16S rRNA gene sequence similarity) and other type strains (≤ 97.0%). The genome comprised a chromosome and two plasmids of 3,299,166 bp with 66.5% G+C content. The DNA-DNA relatedness values between strain CBA4604T and P. koreensis Ch05T, P. alcaliphilus DSM 8512T, and P. stylophorae KTW-16T were 30.5%, 22.9%, and 16.7%, respectively. Cells of the strain were short rod-shaped and oxidase- and catalase-positive. The growth of strain CBA- 4604T was observed at 10–40°C (optimum, 37°C), pH 6.0–10.0 (optimum, pH 7.0), and in the presence of 0–8.0% (w/v) NaCl (optimum, 0–2.0%). Strain CBA4604T contained ubiquinone 10 as the sole isoprenoid quinone and summed feature 8 (C18:1 ω7c/C18:1 ω6c) and C18:0 as the major cellular fatty acids. The polar lipids consisted of phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phospholipid, an unidentified aminolipid, an unidentified glycolipid, and three unidentified lipids. Based on its phylogenetic, genomic, phenotypic, and chemotaxonomic features, we concluded that strain CBA- 4604T represents a novel species in the genus Paracoccus and we propose the name Paracoccus jeotgali sp. nov. The type strain is CBA4604T (= KACC 19579T = JCM 32510T).

Citations

Citations to this article as recorded by  
  • Bacteroides faecium sp. nov. isolated from human faeces
    Juseok Kim, Hye Seon Song, Joon Yong Kim, Tae Woong Whon, Won-Hyong Chung, Young-Do Nam, Yoon-E Choi, Seong Woon Roh
    International Journal of Systematic and Evolutionary Microbiology.2023;[Epub]     CrossRef
  • ODFM, an omics data resource from microorganisms associated with fermented foods
    Tae Woong Whon, Seung Woo Ahn, Sungjin Yang, Joon Yong Kim, Yeon Bee Kim, Yujin Kim, Ji-Man Hong, Hojin Jung, Yoon-E Choi, Se Hee Lee, Seong Woon Roh
    Scientific Data.2021;[Epub]     CrossRef
  • Flaviflexus ciconiae sp. nov., isolated from the faeces of the oriental stork, Ciconia boyciana
    Jae-Yun Lee, Woorim Kang, Pil Soo Kim, So-Yeon Lee, Na-Ri Shin, Hojun Sung, June-Young Lee, Ji-Hyun Yun, Yun-Seok Jeong, Jeong Eun Han, Mi-Ja Jung, Dong-Wook Hyun, Hyun Sik Kim, Euon Jung Tak, Jin-Woo Bae
    International Journal of Systematic and Evolutionary Microbiology.2020; 70(10): 5439.     CrossRef
  • Paracoccus aeridis sp. nov., an indole-producing bacterium isolated from the rhizosphere of an orchid, Aerides maculosa
    Anusha Rai, Smita N, Suresh G, Shabbir A, Deepshikha G, Sasikala Ch, Ramana Ch.V
    International Journal of Systematic and Evolutionary Microbiology .2020; 70(3): 1720.     CrossRef
  • Pectin Degradation is an Important Determinant for Alfalfa Silage Fermentation through the Rescheduling of the Bacterial Community
    Bing Wang, Zhiqiang Sun, Zhu Yu
    Microorganisms.2020; 8(4): 488.     CrossRef
  • Iodobacter ciconiae sp. nov., a bacterium isolated from feces of oriental stork, Ciconia boyciana
    Jae-Yun Lee, Woorim Kang, Pil Soo Kim, So-Yeon Lee, Na-Ri Shin, Hojun Sung, June-Young Lee, Ji-Hyun Yun, Yun-Seok Jeong, Jeong Eun Han, Mi-Ja Jung, Dong-Wook Hyun, Hyun Sik Kim, Euon Jung Tak, Myung-Suk Kang, Ki-Eun Lee, Byoung-Hee Lee, Jin-Woo Bae
    International Journal of Systematic and Evolutionary Microbiology.2019; 69(9): 2948.     CrossRef
Community structures and genomic features of undesirable white colony-forming yeasts on fermented vegetables
Joon Yong Kim , Juseok Kim , In-Tae Cha , Min Young Jung , Hye Seon Song , Yeon Bee Kim , Changsu Lee , Seung-Yeon Kang , Jin-Woo Bae , Yoon-E Choi , Tae-Woon Kim , Seong Woon Roh
J. Microbiol. 2019;57(1):30-37.   Published online October 25, 2018
DOI: https://doi.org/10.1007/s12275-019-8487-y
  • 56 View
  • 0 Download
  • 21 Web of Science
  • 22 Crossref
AbstractAbstract
White colony-forming yeasts (WCFYs) often appear in fermented foods, depending on the storage method. Despite the ongoing research on fermented foods, the community and genome features of WCFYs have not been well studied. In this study, the community structures of WCFYs on fermented vegetables (kimchi) prepared with various raw materials were investigated using deep sequencing. Only eight operational taxonomic units (OTUs) were detected, indicating that the community structure of WCFYs on kimchi is very simple. The five most abundant OTUs represented Pichia kluyveri, Yarrowia lipolytica, Candida sake, Hanseniaspora uvarum, and Kazachstania servazzii. Using a culture-dependent
method
, 41 strains representing the five major OTUs were isolated from the surface of the food samples. Whole genomes of the five major yeast strains were sequenced and annotated. The total genome length for the strains ranged from 8.97 Mbp to 21.32 Mbp. This is the first study to report genome sequences of the two yeasts Pichia kluyveri and Candida sake. Genome analysis indicated that each yeast strain had core metabolic pathways such as oxidative phosphorylation; purine metabolism; glycolysis/gluconeogenesis; aminoacyl- tRNA biosynthesis; citrate cycle; but strain specific pathways were also found. In addition, no toxin or antimicrobial resistance genes were identified. Our study provides genome information for five WCFY strains that may highlight their potential beneficial or harmful metabolic effects in fermented vegetables.

Citations

Citations to this article as recorded by  
  • Effects of total microbiota-containing backslop from 450-day-fermented kimchi on microbe and metabolite dynamics
    Dongjun Kim, Seong-Eun Park, Juhan Pak, Joon Yong Kim, Tae Woong Whon, Kwang-Moon Cho, Suryang Kwak, Hong-Seok Son, Seong Woon Roh
    Food Chemistry.2025; 468: 142420.     CrossRef
  • Effects of storage temperature on the diversity of white colony-forming yeast and correlations between bacterial and yeast communities in salted kimchi cabbage
    Chan-Il Bae, Yoon-Soo Gwak, Su-Jeong Eom, Shinyoung Lee, Mi-Ju Kim
    Food Science and Biotechnology.2025; 34(4): 1001.     CrossRef
  • Effects of white colony-forming yeast on microbial communities and metabolites in kimchi
    Yoon-Soo Gwak, Shinyoung Lee, Chan-Il Bae, Su-Jeong Eom, Mi-Ju Kim
    Food Chemistry.2025; 465: 142059.     CrossRef
  • D-Limonene Inhibits Pichia kluyveri Y-11519 in Sichuan Pickles by Disrupting Metabolism
    Chaoyi Zeng, Yue Sun, Haoran Lin, Ziyu Li, Qing Zhang, Ting Cai, Wenliang Xiang, Jie Tang, Patchanee Yasurin
    Molecules.2024; 29(15): 3561.     CrossRef
  • Genomic analysis of Kazachstania aerobia and Kazachstania servazzii reveals duplication of genes related to acetate ester production
    Mandy Man-Hsi Lin, Michelle E. Walker, Vladimir Jiranek, Krista M. Sumby
    Microbial Genomics .2023;[Epub]     CrossRef
  • Fabrication of Gold Nanoparticles and Cinnamaldehyde-Functionalized Paper-Based Films and Their Antimicrobial Activities against White Film-Forming Yeasts
    Seong Youl Lee, Eun Hae Kim, Tae-Woon Kim, Young-Bae Chung, Ji-Hee Yang, Sung Hee Park, Mi-Ai Lee, Sung Gi Min
    ACS Omega.2023; 8(9): 8256.     CrossRef
  • Combined effect of a neonicotinoid insecticide and a fungicide on honeybee gut epithelium and microbiota, adult survival, colony strength and foraging preferences
    Riccardo Favaro, Paula Melisa Garrido, Daniele Bruno, Chiara Braglia, Daniele Alberoni, Loredana Baffoni, Gianluca Tettamanti, Martin Pablo Porrini, Diana Di Gioia, Sergio Angeli
    Science of The Total Environment.2023; 905: 167277.     CrossRef
  • The potential correlation between microbial communities and flavors in fermented bamboo shoots
    Shubo Li, Minghao Sun, Yufeng Tian, Cuiwen Jian, Beibei Lv, Yunxia Bai, Xiaoling Liu, Yuan Guo
    Food Bioscience.2023; 56: 103066.     CrossRef
  • Profiling the composition and metabolic functions of microbial community in pellicle-forming radish paocai
    Ting Mi, Yao Jin, Yulan Che, Jun Huang, Rongqing Zhou, Chongde Wu
    International Journal of Food Microbiology.2023; 388: 110087.     CrossRef
  • Long-term population dynamics of viable microbes in a closed ecosystem of fermented vegetables
    Joon Yong Kim, Seong-Eun Park, Eun-Ju Kim, Seung-Ho Seo, Tae Woong Whon, Kwang-Moon Cho, Sun Jae Kwon, Seong Woon Roh, Hong-Seok Son
    Food Research International.2022; 154: 111044.     CrossRef
  • Safety assessment of white colony-forming yeasts in kimchi
    Chang Hee Jeong, Joon Yong Kim, Young Joon Oh, Hye In Ko, Seong Woon Roh, Sung Wook Hong, Hyuk Cheol Kwon, Sung Gu Han, Tae Woon Kim
    Food Microbiology.2022; 106: 104057.     CrossRef
  • Safety Assessment of White Colony-Forming Yeasts in Kimchi
    Chang Hee Jeong, Joon Yong Kim, Young Joon Oh, Hye In Ko, Seong Woon Roh, Sung Wook Hong, Hyuk Cheol Kwon, Sung Gu Han, Tae-Woon Kim
    SSRN Electronic Journal .2022;[Epub]     CrossRef
  • Real-time PCR assays for the quantitative detection of Kazachstania servazzii and Candida sake related to undesirable white colony on kimchi
    Mi-Ju Kim, Sung-gi Min, So Won Shin, Jiyong Shin, Hae-Yeong Kim
    Food Control.2021; 125: 107984.     CrossRef
  • Yarrowia lipolytica: a multitalented yeast species of ecological significance
    Dmitry Mamaev, Renata Zvyagilskaya
    FEMS Yeast Research.2021;[Epub]     CrossRef
  • ODFM, an omics data resource from microorganisms associated with fermented foods
    Tae Woong Whon, Seung Woo Ahn, Sungjin Yang, Joon Yong Kim, Yeon Bee Kim, Yujin Kim, Ji-Man Hong, Hojin Jung, Yoon-E Choi, Se Hee Lee, Seong Woon Roh
    Scientific Data.2021;[Epub]     CrossRef
  • Growth Inhibitory Effect of Garlic Powder and Cinnamon Extract on White Colony-Forming Yeast in Kimchi
    Mi-Ju Kim, Seong-Eun Kang, Chang Hee Jeong, Sung-Gi Min, Sung Wook Hong, Seong Woon Roh, Deok-Young Jhon, Tae-Woon Kim
    Foods.2021; 10(3): 645.     CrossRef
  • Halotolerant Yeasts: Biodiversity and Potential Application
    O.D. Ianieva
    Mikrobiolohichnyi Zhurnal.2020; 82(5): 65.     CrossRef
  • Impact of fermentation conditions on the diversity of white colony-forming yeast and analysis of metabolite changes by white colony-forming yeast in kimchi
    Mi-Ju Kim, Hae-Won Lee, Joon Yong Kim, Seong Eun Kang, Seong Woon Roh, Sung Wook Hong, Seung Ran Yoo, Tae-Woon Kim
    Food Research International.2020; 136: 109315.     CrossRef
  • Non-tandem repeat polymorphisms at microsatellite loci in wine yeast species
    María Laura Raymond Eder, Alberto Luis Rosa
    Molecular Genetics and Genomics.2020; 295(3): 685.     CrossRef
  • Unraveling microbial fermentation features in kimchi: from classical to meta-omics approaches
    Se Hee Lee, Tae Woong Whon, Seong Woon Roh, Che Ok Jeon
    Applied Microbiology and Biotechnology.2020; 104(18): 7731.     CrossRef
  • Draft Genome Sequences of Two Isolates of the Yeast Kazachstania servazzii Recovered from Soil in Ireland
    Lynne Faherty, Clifton Lewis, Matt McElheron, Niall Garvey, Róisín Duggan, Ben Shovlin, Tadhg Ó Cróinín, Kevin P. Byrne, Caoimhe E. O’Brien, Kenneth H. Wolfe, Geraldine Butler, Antonis Rokas
    Microbiology Resource Announcements.2019;[Epub]     CrossRef
  • Effect of lactic acid bacteria on phenyllactic acid production in kimchi
    Sera Jung, Hyelyeon Hwang, Jong-Hee Lee
    Food Control.2019; 106: 106701.     CrossRef
Salicibibacter kimchii gen. nov., sp. nov., a moderately halophilic and alkalitolerant bacterium in the family Bacillaceae, isolated from kimchi
Ja-Young Jang , Young Joon Oh , Seul Ki Lim , Hyo Kyeong Park , Changsu Lee , Joon Yong Kim , Mi-Ai Lee , Hak-Jong Choi
J. Microbiol. 2018;56(12):880-885.   Published online October 25, 2018
DOI: https://doi.org/10.1007/s12275-018-8518-0
  • 59 View
  • 0 Download
  • 11 Web of Science
  • 12 Crossref
AbstractAbstract
A moderately halophilic and alkalitolerant bacterial strain NKC1-1T was isolated from commercial kimchi in Korea. Strain NKC1-1T was Gram-stain-positive, aerobic, rod-shaped, non-motile, and contained diaminopimelic acid-type murein. Cell growth was observed in a medium containing 0–25% (w/v) NaCl (optimal at 10% [w/v]), at 20–40°C (optimal at 37°C) and pH 6.5–10.0 (optimal at pH 9.0). The major isoprenoid quinone of the isolate was menaquinone-7, and the major polar lipids were phosphatidylglycerol and unidentified phospholipids. Cell membrane of the strain contained iso-C17:0 and anteiso-C15:0 as the major fatty acids. Its DNA G + C content was 45.2 mol%. Phylogenetic analysis indicated the strain to be most closely related to Geomicrobium halophilum with 92.7–92.9% 16S rRNA gene sequence similarity. Based on polyphasic taxonomic evaluation with phenotypic, phylogenetic, and chemotaxonomic analyses, the strain represents a novel species in a new genus, for which the name Salicibibacter kimchii gen. nov., sp. nov. is proposed (= CECT 9537T; KCCM 43276T).

Citations

Citations to this article as recorded by  
  • A taxonomic note on the order Caryophanales: description of 12 novel families and emended description of 21 families
    Yangjie Li, Dechao Zhang, Dexin Bo, Donghai Peng, Ming Sun, Jinshui Zheng
    International Journal of Systematic and Evolutionary Microbiology .2024;[Epub]     CrossRef
  • Bacillales: From Taxonomy to Biotechnological and Industrial Perspectives
    Sharareh Harirchi, Taner Sar, Mohaddaseh Ramezani, Habibu Aliyu, Zahra Etemadifar, Seyed Ali Nojoumi, Fatemeh Yazdian, Mukesh Kumar Awasthi, Mohammad J. Taherzadeh
    Microorganisms.2022; 10(12): 2355.     CrossRef
  • Salicibibacter cibarius sp. nov. and Salicibibacter cibi sp. nov., two novel species of the family Bacillaceae isolated from kimchi
    Young Joon Oh, Joon Yong Kim, Seul Ki Lim, Min-Sung Kwon, Hak-Jong Choi
    Journal of Microbiology.2021; 59(5): 460.     CrossRef
  • The Methods of Digging for “Gold” within the Salt: Characterization of Halophilic Prokaryotes and Identification of Their Valuable Biological Products Using Sequencing and Genome Mining Tools
    Jakub Lach, Paulina Jęcz, Dominik Strapagiel, Agnieszka Matera-Witkiewicz, Paweł Stączek
    Genes.2021; 12(11): 1756.     CrossRef
  • Genomic characterization of nine Clostridioides difficile strains isolated from Korean patients with Clostridioides difficile infection
    Seung Woo Ahn, Se Hee Lee, Uh Jin Kim, Hee-Chang Jang, Hak-Jong Choi, Hyon E. Choy, Seung Ji Kang, Seong Woon Roh
    Gut Pathogens.2021;[Epub]     CrossRef
  • Haloplanus rubicundus sp. nov., an extremely halophilic archaeon isolated from solar salt
    Yeon Bee Kim, Joon Yong Kim, Hye Seon Song, Se Hee Lee, Na-Ri Shin, Jin-Woo Bae, Jinjong Myoung, Ki-Eun Lee, In-Tae Cha, Jin-Kyu Rhee, Seong Woon Roh
    Systematic and Applied Microbiology.2020; 43(3): 126085.     CrossRef
  • Characterization of a potential probiotic bacterium Lactococcus raffinolactis WiKim0068 isolated from fermented vegetable using genomic and in vitro analyses
    Min Young Jung, Changsu Lee, Myung-Ji Seo, Seong Woon Roh, Se Hee Lee
    BMC Microbiology.2020;[Epub]     CrossRef
  • Lentibacillus cibarius sp. nov., isolated from kimchi, a Korean fermented food
    Young Joon Oh, Joon Yong Kim, Hee Eun Jo, Hyo Kyeong Park, Seul Ki Lim, Min-Sung Kwon, Hak-Jong Choi
    Journal of Microbiology.2020; 58(5): 387.     CrossRef
  • Effects of an auxin-producing symbiotic bacterium on cell growth of the microalga Haematococcus pluvialis: Elevation of cell density and prolongation of exponential stage
    Changsu Lee, Min Seo Jeon, Joon Yong Kim, Se Hee Lee, Dae Geun Kim, Seong Woon Roh, Yoon-E Choi
    Algal Research.2019; 41: 101547.     CrossRef
  • Salicibibacter halophilus sp. nov., a moderately halophilic bacterium isolated from kimchi
    Young Joon Oh, Joon Yong Kim, Hyo Kyeong Park, Ja-Young Jang, Seul Ki Lim, Min-Sung Kwon, Hak-Jong Choi
    Journal of Microbiology.2019; 57(11): 997.     CrossRef
  • List of new names and new combinations that have appeared in effective publications outside of the IJSEM and are submitted for valid publication
    Aharon Oren, George M. Garrity
    International Journal of Systematic and Evolutionary Microbiology .2019;[Epub]     CrossRef
  • Propionibacterium freudenreichii CIRM-BIA 129 Osmoadaptation Coupled to Acid-Adaptation Increases Its Viability During Freeze-Drying
    Floriane Gaucher, Koffigan Kponouglo, Houem Rabah, Sylvie Bonnassie, Jordane Ossemond, Sandrine Pottier, Julien Jardin, Valérie Briard-Bion, Pierre Marchand, Philippe Blanc, Romain Jeantet, Gwénaël Jan
    Frontiers in Microbiology.2019;[Epub]     CrossRef
Acinetobacter apis sp. nov., Isolated from the Intestinal Tract of a Honey Bee, Apis mellifera
Pil Soo Kim , Na-Ri Shin , Joon Yong Kim , Ji-Hyun Yun , Dong-Wook Hyun , Jin-Woo Bae
J. Microbiol. 2014;52(8):639-645.   Published online August 1, 2014
DOI: https://doi.org/10.1007/s12275-014-4078-0
  • 53 View
  • 0 Download
  • 34 Crossref
AbstractAbstract
A novel Gram-negative, obligate aerobic, non-motile, and both coccobacillus- and bacillus-shaped bacterium, designated strain HYN18T, was isolated from the intestinal tract of a honey bee (Apis mellifera). The isolate was oxidasenegative and catalase-positive. Strain HYN18T showed optimum growth at 25°C, pH 6–7, and in the presence of 1% (w/v) NaCl in trypticase soy broth medium. The isolate was negative for hydrolyses of starch, casein, gelatin and urea, indole production from tryptone and hemolysis on sheep blood agar. A phylogenetic analysis based on the 16S rRNA gene and rpoB gene sequence showed that strain HYN18T was most closely related to Acinetobacter nectaris SAP 763.2T and A. boissieri SAP 284.1T with 98.3% and 98.1% similarity (16S rRNA gene), respectively, and 84.4% similarity with Acinetobacter nectaris SAP 763.2T (rpoB gene). The major cellular fatty acids were summed features 3 (comprising C16:1ω7c/C16:1ω6c), C12:0 and C16:0. The main isoprenoid quinone was ubiquinone-9 (Q-9). The polar lipids of strain HYN18T were phosphatidylethanolamine, three unidentified lipids, an unidentified phospholipid and an unidentified glycolipid. The DNA G+C content was 40.6 mol%. DNADNA hybridization experiments indicated less than 33 ± 10% relatedness to the closest phylogenetic species, Acinetobacter nectaris SAP 763.2T. Thus, the phenotypic, phylogenetic and genotypic analyses indicate that strain HYN18T is a novel species within the genus Acinetobacter, for which the name Acinetobacter apis is proposed. The type strain is HYN18T (=KACC 16906T =JCM 18575T).

Citations

Citations to this article as recorded by  
  • Tiny but mighty? Overview of a decade of research on nectar bacteria
    Sergio Quevedo‐Caraballo, Clara de Vega, Bart Lievens, Tadashi Fukami, Sergio Álvarez‐Pérez
    New Phytologist.2024;[Epub]     CrossRef
  • Melipona stingless bees and honey microbiota reveal the diversity, composition, and modes of symbionts transmission
    Alan Emanuel Silva Cerqueira, Helena Santiago Lima, Lívia Carneiro Fidélis Silva, Tomás Gomes Reis Veloso, Sérgio Oliveira de Paula, Weyder Cristiano Santana, Cynthia Canêdo da Silva
    FEMS Microbiology Ecology.2024;[Epub]     CrossRef
  • A quantitative survey of the blueberry (Vacciniumspp.) culturable nectar microbiome: variation between cultivars, locations, and farm management approaches
    Caitlin C Rering, Arthur B Rudolph, Qin-Bao Li, Quentin D Read, Patricio R Muñoz, John J Ternest, Charles T Hunter
    FEMS Microbiology Ecology.2024;[Epub]     CrossRef
  • Bumble bee microbiota shows temporal succession and increase of lactic acid bacteria when exposed to outdoor environments
    Arne Weinhold, Elisabeth Grüner, Alexander Keller
    Frontiers in Cellular and Infection Microbiology.2024;[Epub]     CrossRef
  • New insights into honey bee viral and bacterial seasonal infection patterns using third-generation nanopore sequencing on honey bee haemolymph
    Cato Van Herzele, Sieglinde Coppens, Nick Vereecke, Sebastiaan Theuns, Dirk C. de Graaf, Hans Nauwynck
    Veterinary Research.2024;[Epub]     CrossRef
  • Purification and characterization of proteins from Manuka honey
    Anu Jose, Alanta Maria Binu, Eleeswa Celin Syrus, Joyal Elizabeth Baiju, Neema, Susan Jose, Aneena Mariya Abraham, Julie Jacob
    Materials Today: Proceedings.2023;[Epub]     CrossRef
  • Sugar Concentration, Nitrogen Availability, and Phylogenetic Factors Determine the Ability of Acinetobacter spp. and Rosenbergiella spp. to Grow in Floral Nectar
    José R. Morales-Poole, Clara de Vega, Kaoru Tsuji, Hans Jacquemyn, Robert R. Junker, Carlos M. Herrera, Chris Michiels, Bart Lievens, Sergio Álvarez-Pérez
    Microbial Ecology.2023; 86(1): 377.     CrossRef
  • Molecular identification of major bacteria in honey and the effect of microwave treatment on its microbial quality and antibacterial activity
    Ziad Jaradat, Batool Khataybeh, Abdull Majid Al Ghzawi, Qutaiba Ababneh, Anas Al Nabusli
    AIMS Agriculture and Food.2022; 7(3): 594.     CrossRef
  • Collection Time, Location, and Mosquito Species Have Distinct Impacts on the Mosquito Microbiota
    Daniel W. Pérez-Ramos, Martina M. Ramos, Kyle C. Payne, Bryan V. Giordano, Eric P. Caragata
    Frontiers in Tropical Diseases.2022;[Epub]     CrossRef
  • Potential effects of nectar microbes on pollinator health
    Valerie N. Martin, Robert N. Schaeffer, Tadashi Fukami
    Philosophical Transactions of the Royal Society B: Biological Sciences.2022;[Epub]     CrossRef
  • Reconstructing the ecosystem context of a species: Honey-borne DNA reveals the roles of the honeybee
    Helena Kristiina Wirta, Mohammad Bahram, Kirsten Miller, Tomas Roslin, Eero Vesterinen, Wolfgang Blenau
    PLOS ONE.2022; 17(7): e0268250.     CrossRef
  • The distinctive roles played by the superoxide dismutases of the extremophile Acinetobacter sp. Ver3
    Bruno Alejandro Steimbrüch, Mariana Gabriela Sartorio, Néstor Cortez, Daniela Albanesi, María-Natalia Lisa, Guillermo Daniel Repizo
    Scientific Reports.2022;[Epub]     CrossRef
  • Parasphingorhabdus cellanae sp. nov., isolated from the gut of a Korean limpet, Cellana toreuma
    Ji-Ho Yoo, Jeong Eun Han, June-Young Lee, Su-Won Jeong, Yun-Seok Jeong, Jae-Yun Lee, So-Yeon Lee, Hojun Sung, Euon Jung Tak, Hyun Sik Kim, Pil Soo Kim, Jee-Won Choi, Do-Yeon Kim, In Chul Jeong, Do-Hun Gim, Seo Min Kang, Jin-Woo Bae
    International Journal of Systematic and Evolutionary Microbiology .2022;[Epub]     CrossRef
  • Evolutionarily stable gene clusters shed light on the common grounds of pathogenicity in the Acinetobacter calcoaceticus-baumannii complex
    Bardya Djahanschiri, Gisela Di Venanzio, Jesus S. Distel, Jennifer Breisch, Marius Alfred Dieckmann, Alexander Goesmann, Beate Averhoff, Stephan Göttig, Gottfried Wilharm, Mario F. Feldman, Ingo Ebersberger, Xavier Didelot
    PLOS Genetics.2022; 18(6): e1010020.     CrossRef
  • Gut Bacterial Flora of Open Nested Honeybee, Apis florea
    D. N. Ganeshprasad, Jafar K. Lone, Kunal Jani, Yogesh S. Shouche, Khalid Ali Khan, Samy Sayed, Mustafa Shukry, Showket A. Dar, Muntazir Mushtaq, A. H. Sneharani
    Frontiers in Ecology and Evolution.2022;[Epub]     CrossRef
  • Changes of microorganism composition in fresh and stored bee pollen from Southern Germany
    Carolin Friedle, Paul D’Alvise, Karsten Schweikert, Klaus Wallner, Martin Hasselmann
    Environmental Science and Pollution Research.2021; 28(34): 47251.     CrossRef
  • Acinetobacter pollinis sp. nov., Acinetobacter baretiae sp. nov. and Acinetobacter rathckeae sp. nov., isolated from floral nectar and honey bees
    Sergio Alvarez-Perez, Lydia J. Baker, Megan M. Morris, Kaoru Tsuji, Vivianna A. Sanchez, Tadashi Fukami, Rachel L. Vannette, Bart Lievens, Tory A. Hendry
    International Journal of Systematic and Evolutionary Microbiology .2021;[Epub]     CrossRef
  • Nitrogen Assimilation Varies Among Clades of Nectar- and Insect-Associated Acinetobacters
    Sergio Álvarez-Pérez, Kaoru Tsuji, Marion Donald, Ado Van Assche, Rachel L. Vannette, Carlos M. Herrera, Hans Jacquemyn, Tadashi Fukami, Bart Lievens
    Microbial Ecology.2021; 81(4): 990.     CrossRef
  • Effects of pollen and nectar inoculation by yeasts, bacteria or both on bumblebee colony development
    María I. Pozo, Toon Mariën, Gaby van Kemenade, Felix Wäckers, Hans Jacquemyn
    Oecologia.2021; 195(3): 689.     CrossRef
  • Structural diversity and functional variability of gut microbial communities associated with honey bees
    Khalid Ali Khan, Ahmad A. Al-Ghamdi, Hamed A. Ghramh, Mohammad Javed Ansari, Habib Ali, Saad A. Alamri, Saad Naser Al- Kahtani, Nuru Adgaba, Muhammad Qasim, Muhammad Hafeez
    Microbial Pathogenesis.2020; 138: 103793.     CrossRef
  • Different Dynamics of Bacterial and Fungal Communities in Hive-Stored Bee Bread and Their Possible Roles: A Case Study from Two Commercial Honey Bees in China
    Terd Disayathanoowat, HuanYuan Li, Natapon Supapimon, Nakarin Suwannarach, Saisamorn Lumyong, Panuwan Chantawannakul, Jun Guo
    Microorganisms.2020; 8(2): 264.     CrossRef
  • Abundance of mobile genetic elements in an Acinetobacter lwoffii strain isolated from Transylvanian honey sample
    Alexandra Veress, Tibor Nagy, Tímea Wilk, János Kömüves, Ferenc Olasz, János Kiss
    Scientific Reports.2020;[Epub]     CrossRef
  • Microbiota comparison in the intestine of juvenile Chinese mitten crab Eriocheir sinensis fed different diets
    Yunfei Sun, Wenfeng Han, Jian Liu, Feng Liu, Yongxu Cheng
    Aquaculture.2020; 515: 734518.     CrossRef
  • Acinetobacter baumannii NCIMB8209: a Rare Environmental Strain Displaying Extensive Insertion Sequence-Mediated Genome Remodeling Resulting in the Loss of Exposed Cell Structures and Defensive Mechanisms
    Guillermo D. Repizo, Martín Espariz, Joana L. Seravalle, Juan Ignacio Díaz Miloslavich, Bruno A. Steimbrüch, Howard A. Shuman, Alejandro M. Viale, Ana Cristina Gales
    mSphere.2020;[Epub]     CrossRef
  • Acinetobacter Strain KUO11TH, a Unique Organism Related to Acinetobacter pittii and Isolated from the Skin Mucus of Healthy Bighead Catfish and Its Efficacy Against Several Fish Pathogens
    Anurak Bunnoy, Uthairat Na-Nakorn, Pattanapon Kayansamruaj, Prapansak Srisapoome
    Microorganisms.2019; 7(11): 549.     CrossRef
  • Probiotic Effects of a Novel Strain, Acinetobacter KU011TH, on the Growth Performance, Immune Responses, and Resistance against Aeromonas hydrophila of Bighead Catfish (Clarias macrocephalus Günther, 1864)
    Anurak Bunnoy, Uthairat Na-Nakorn, Prapansak Srisapoome
    Microorganisms.2019; 7(12): 613.     CrossRef
  • Phylogenetic signal in phenotypic traits related to carbon source assimilation and chemical sensitivity in Acinetobacter species
    Ado Van Assche, Sergio Álvarez-Pérez, Anna de Breij, Joseph De Brabanter, Kris A. Willems, Lenie Dijkshoorn, Bart Lievens
    Applied Microbiology and Biotechnology.2017; 101(1): 367.     CrossRef
  • Acinetobacter larvae sp. nov., isolated from the larval gut of Omphisa fuscidentalis
    Song Liu, Yanwei Wang, Zhiyong Ruan, Kedong Ma, Bo Wu, Yansheng Xu, Jingli Wang, Yang You, Mingxiong He, Guoquan Hu
    International Journal of Systematic and Evolutionary Microbiology.2017; 67(4): 806.     CrossRef
  • Relative abundance of deformed wing virus, Varroa destructor virus 1, and their recombinants in honey bees (Apis mellifera) assessed by kmer analysis of public RNA-Seq data
    Robert Scott Cornman
    Journal of Invertebrate Pathology.2017; 149: 44.     CrossRef
  • Reservoirs of Non-baumannii Acinetobacter Species
    Ahmad Al Atrouni, Marie-Laure Joly-Guillou, Monzer Hamze, Marie Kempf
    Frontiers in Microbiology.2016;[Epub]     CrossRef
  • Acinetobacter equi sp. nov., isolated from horse faeces
    Marie T. Poppel, Evelyn Skiebe, Michael Laue, Holger Bergmann, Ingo Ebersberger, Thomas Garn, Angelika Fruth, Sandra Baumgardt, Hans-Jürgen Busse, Gottfried Wilharm
    International Journal of Systematic and Evolutionary Microbiology.2016; 66(2): 881.     CrossRef
  • Acinetobacter dijkshoorniae sp. nov., a member of the Acinetobacter calcoaceticus–Acinetobacter baumannii complex mainly recovered from clinical samples in different countries
    Clara Cosgaya, Marta Marí-Almirall, Ado Van Assche, Dietmar Fernández-Orth, Noraida Mosqueda, Murat Telli, Geert Huys, Paul G. Higgins, Harald Seifert, Bart Lievens, Ignasi Roca, Jordi Vila
    International Journal of Systematic and Evolutionary Microbiology .2016; 66(10): 4105.     CrossRef
  • Ventosimonas gracilis gen. nov., sp. nov., a member of the Gammaproteobacteria isolated from Cephalotes varians ant guts representing a new family, Ventosimonadaceae fam. nov., within the order ‘Pseudomonadales’
    Jonathan Y. Lin, William J. Hobson, John T. Wertz
    International Journal of Systematic and Evolutionary Microbiology .2016; 66(8): 2869.     CrossRef
  • List of new names and new combinations previously effectively, but not validly, published
    Aharon Oren, George M. Garrity
    International Journal of Systematic and Evolutionary Microbiology .2014; 64(Pt_11): 3603.     CrossRef
Research Support, Non-U.S. Gov'ts
Dyella jejuensis sp. nov., Isolated from Soil of Hallasan Mountain in Jeju Island
Min-Soo Kim , Dong-Wook Hyun , Joon Yong Kim , Soyeon Kim , Jin-Woo Bae , Eun-Jin Park
J. Microbiol. 2014;52(5):373-377.   Published online May 9, 2014
DOI: https://doi.org/10.1007/s12275-014-3670-7
  • 48 View
  • 0 Download
  • 19 Crossref
AbstractAbstract
A novel bacterium, designated JP1T, was isolated from soil of Hallasan Mountain in Jeju Island. The isolate was a Gram- negative, aerobic, motile and rod-shaped (0.2–0.4 × 1.2–2.0 μm) bacterium. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain JP1T was closely related to Dyella koreensis with 97.6% similarity. Growth of strain JP1T occurred at 10–37°C, pH 5–7 and 0–1% (w/v) NaCl. The genomic DNA G+C content of strain JP1T was 62.1 mol%. The major fatty acids were iso-C16:0, iso-C17:1 ω9c, and iso- C15:0. The predominant quinone was ubiquinone-8. The major polar lipids of strain JP1T were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, uniden-tified aminolipids and unidentified aminophospholipids. The DNA-DNA relatedness values between strain JP1T and pre-viously reported Dyella species were <10%. Based on pheno-typic, genotypic, and phylogenetic distinctness, strain JP1T represents a novel species in the genus Dyella, for which the name Dyella jejuensis sp. nov. is proposed. The type strain is JP1T (=KACC 17701T =JCM 19615T).

Citations

Citations to this article as recorded by  
  • Effects of different cultivation media on root bacterial community characteristics of greenhouse tomatoes
    Xinjian Zhang, Qiang Li, Fangyuan Zhou, Susu Fan, Xiaoyan Zhao, Chi Zhang, Kun Yan, Xiaoqing Wu
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Soil pH and aridity influence distributions of branched tetraether lipids in grassland soils along an aridity transect
    Jingjing Guo, Tian Ma, Nana Liu, Xinying Zhang, Huifeng Hu, Wenhong Ma, Zhiheng Wang, Xiaojuan Feng, Francien Peterse
    Organic Geochemistry.2022; 164: 104347.     CrossRef
  • Description of Polaribacter batillariae sp. nov., Polaribacter cellanae sp. nov., and Polaribacter pectinis sp. nov., novel bacteria isolated from the gut of three types of South Korean shellfish
    Su-Won Jeong, Jeong Eun Han, June-Young Lee, Ji-Ho Yoo, Do-Yeon Kim, In Chul Jeong, Jee-Won Choi, Yun-Seok Jeong, Jae-Yun Lee, So-Yeon Lee, Euon Jung Tak, Hojun Sung, Hyun Sik Kim, Pil Soo Kim, Dong-Wook Hyun, Jin-Woo Bae
    Journal of Microbiology.2022; 60(6): 576.     CrossRef
  • Actinoplanes solisilvae sp. nov., Isolated from Birch Forest Soil
    Qingyun Ma, Qi Zhang, Xu Jiang, Delong Kong, Xiaoyan Han, Huiying Xue, Yiqing Zhou, Yuqin Zhang, Wei Zhang, Zhiyong Ruan
    Current Microbiology.2020; 77(11): 3799.     CrossRef
  • Aerosticca soli gen. nov., sp. nov., an aerobic gammaproteobacterium isolated from crude oil-contaminated soil
    Miho Watanabe, Hisaya Kojima, Manabu Fukui
    Archives of Microbiology.2020; 202(5): 1069.     CrossRef
  • The complex interactions between novel DEHP-metabolising bacteria and the microbes in agricultural soils
    Mengke Song, Yujie Wang, Longfei Jiang, Ke Peng, Zikai Wei, Dayi Zhang, Yongtao Li, Gan Zhang, Chunling Luo
    Science of The Total Environment.2019; 660: 733.     CrossRef
  • Dyella monticola sp. nov. and Dyella psychrodurans sp. nov., isolated from monsoon evergreen broad-leaved forest soil of Dinghu Mountain, China
    Xiang-yue Zhou, Zeng-hong Gao, Mei-hong Chen, Mei-qi Jian, Li-hong Qiu
    International Journal of Systematic and Evolutionary Microbiology .2019; 69(4): 1016.     CrossRef
  • Dyella dinghuensis sp. nov. and Dyella choica sp. nov., isolated from forest soil
    Fang-hong Ou, Zeng-hong Gao, Mei-hong Chen, Jie-yi Bi, Li-hong Qiu
    International Journal of Systematic and Evolutionary Microbiology .2019; 69(5): 1496.     CrossRef
  • Dyella halodurans sp. nov., isolated from lower subtropical forest soil
    Yu-min Cai, Zeng-hong Gao, Mei-hong Chen, Yi-xian Huang, Li-hong Qiu
    International Journal of Systematic and Evolutionary Microbiology.2018; 68(10): 3237.     CrossRef
  • Dyella acidisoli sp. nov., D. flagellata sp. nov. and D. nitratireducens sp. nov., isolated from forest soil
    Mei-hong Chen, Fan Xia, Ying-ying Lv, Xiang-yue Zhou, Li-hong Qiu
    International Journal of Systematic and Evolutionary Microbiology.2017; 67(3): 736.     CrossRef
  • Dyella lipolytica sp. nov., a lipolytic bacterium isolated from lower subtropical forest soil
    Liang Tang, Mei-hong Chen, Xi-chen Nie, Meng-ran Ma, Li-hong Qiu
    International Journal of Systematic and Evolutionary Microbiology .2017; 67(5): 1235.     CrossRef
  • First case of neonatal bacteremia due to Dyella genus
    Nesrine Hakima, Philippe Bidet, Maureen Lopez, Stéphane Rioualen, Agnès Carol, Stéphane Bonacorsi
    Diagnostic Microbiology and Infectious Disease.2017; 87(2): 199.     CrossRef
  • Dyella caseinilytica sp. nov., Dyella flava sp. nov. and Dyella mobilis sp. nov., isolated from forest soil
    Fan Xia, Mei-hong Chen, Ying-ying Lv, Han-yun Zhang, Li-hong Qiu
    International Journal of Systematic and Evolutionary Microbiology.2017; 67(9): 3237.     CrossRef
  • List of new names and new combinations previously effectively, but not validly, published
    Aharon Oren, George M. Garrity
    International Journal of Systematic and Evolutionary Microbiology .2016; 66(1): 1.     CrossRef
  • Dyella humi sp. nov., isolated from forest soil
    Mei-Hong Chen, Ying-Ying Lv, Jia Wang, Liang Tang, Li-Hong Qiu
    International Journal of Systematic and Evolutionary Microbiology.2016; 66(11): 4372.     CrossRef
  • Effect of lactic acid bacteria isolated from fermented mustard on immunopotentiating activity
    Chen-Kai Chang, Shu-Chen Wang, Chih-Kwang Chiu, Shih-Ying Chen, Zong-Tsi Chen, Pin-Der Duh
    Asian Pacific Journal of Tropical Biomedicine.2015; 5(4): 281.     CrossRef
  • List of new names and new combinations previously effectively, but not validly, published
    Aharon Oren, George M. Garrity
    International Journal of Systematic and Evolutionary Microbiology .2015; 65(Pt_11): 3763.     CrossRef
  • In vitro study of the effect of a probiotic bacterium Lactobacillus rhamnosus against herpes simplex virus type 1
    Soghra Khani, Mohammad Motamedifar, Hossein Golmoghaddam, Hamideh Mahmoodzadeh Hosseini, Zahra Hashemizadeh
    The Brazilian Journal of Infectious Diseases.2012; 16(2): 129.     CrossRef
  • Probiotics and Lung Diseases
    Paul Forsythe
    Chest.2011; 139(4): 901.     CrossRef
Paenibacillus marinisediminis sp. nov., a Bacterium Isolated from Marine Sediment
Hae-Won Lee , Seong Woon Roh , Kyung June Yim , Na-Ri Shin , Jina Lee , Tae Woong Whon , Joon Yong Kim , Dong-Wook Hyun , Daekyung Kim , Jin-Woo Bae
J. Microbiol. 2013;51(3):312-317.   Published online June 28, 2013
DOI: https://doi.org/10.1007/s12275-013-3198-2
  • 41 View
  • 0 Download
  • 13 Scopus
AbstractAbstract
A Gram-negative, nonmotile, endospore-forming, rod-shaped bacterial strain LHW35T, which belonged to the genus Paenibacillus, was isolated from marine sediment collected from the south coast of the Republic of Korea. A phylogenetic analysis of 16S rRNA gene sequences indicated that strain LHW35T was most closely related to Paenibacillus taiwanensis G-soil-2-3T (97.2% similarity). The optimal growth conditions for strain LHW35T were 37°C, pH 6.0, and 0% (w/v) NaCl. The main isoprenoid quinone was menaquinone-7 (MK-7) and the major polyamine was spermidine. The diamino acid present in the cell-wall peptidoglycan was meso-diaminopimelic acid. The major fatty acids were anteiso-C15:0 and C16:0. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, unidentified aminohospholipids, unidentified phospholipids, and unidentified polar lipids. A DNA-DNA hybridization experiment using the type strain of P. taiwanensis indicated <40% relatedness. The DNA G+C content was 45.0 mol%. Based on these phylogenetic, genomic, and phenotypic analyses, strain LHW35T should be classified as a novel species within the genus Paenibacillus, for which the name Paenibacillus marinisediminis sp. nov. is proposed. The type strain is LHW35T (=KACC 16317T =JCM 17886T).

Journal of Microbiology : Journal of Microbiology
TOP