Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "Microbiota transplantation"
Filter
Filter
Article category
Keywords
Publication year
Authors
Review
Fecal Microbiota Transplantation: Indications, Methods, and Challenges.
Jee Young Lee, Yehwon Kim, Jiyoun Kim, Jiyeun Kate Kim
J. Microbiol. 2024;62(12):1057-1074.   Published online November 18, 2024
DOI: https://doi.org/10.1007/s12275-024-00184-3
  • 129 View
  • 0 Download
  • 1 Web of Science
  • 4 Crossref
AbstractAbstract
Over the past two decades, as the importance of gut microbiota to human health has become widely known, attempts have been made to treat diseases by correcting dysbiosis of gut microbiota through fecal microbiota transplantation (FMT). Apart from current knowledge of gut microbiota, FMT to treat disease has a long history, from the treatment of food poisoning in the fourth century to the treatment of Clostridioides difficile infections in the twentieth century. In 2013, FMT was recognized as a standard treatment for recurrent C. difficile because it consistently showed high efficacy. Though recurrent C. difficile is the only disease internationally recognized for FMT efficacy, FMT has been tested for other diseases and shown some promising preliminary results. Different FMT methods have been developed using various formulations and administration routes. Despite advances in FMT, some issues remain to be resolved, such as donor screening, manufacturing protocols, and unknown components in the fecal microbiota. In this review, we discuss the mechanisms, clinical indications, methods, and challenges of current FMT. We also discuss the development of alternative therapies to overcome the challenges of FMT.

Citations

Citations to this article as recorded by  
  • Transplantation of Fecal Flora from Patients with Atherosclerosis to Mice Can Increase Serum Low-Density Lipoprotein Cholesterol and Affect Intestinal Flora and Its Metabolites
    Liang Feng, Jianting Feng, Li He, Fu Chen, Xin Feng, Suwen Wang
    Applied Microbiology.2025; 5(1): 29.     CrossRef
  • Management of refractory checkpoint inhibitor-induced colitis
    Anas Zaher, Maria Julia Moura Nascimento Santos, Hassan Elsaygh, Stephen J. Peterson, Carolina Colli Cruz, Anusha Shirwaikar Thomas, Yinghong Wang
    Expert Opinion on Drug Safety.2025; : 1.     CrossRef
  • Fecal Microbiota Transplantation (FMT) in Clostridium difficile Infection: A Paradigm Shift in Gastrointestinal Microbiome Modulation
    Muhammad Hamza Saeed, Sundas Qamar, Ayesha Ishtiaq, Qudsia Umaira khan, Asma Atta, Maryam Atta, Hifza Ishtiaq, Marriam Khan, Muhammad Rawal Saeed, Ayesha Iqbal
    Cureus.2025;[Epub]     CrossRef
  • Exploring the gut microbiome’s influence on cancer-associated anemia: Mechanisms, clinical challenges, and innovative therapies
    Ayrton Bangolo, Behzad Amoozgar, Maryam Habibi, Elizabeth Simms, Vignesh K Nagesh, Shruti Wadhwani, Nikita Wadhwani, Auda Auda, Daniel Elias, Charlene Mansour, Robert Abbott, Nisrene Jebara, Lili Zhang, Sarvarinder Gill, Kareem Ahmed, Andrew Ip, Andre Goy
    World Journal of Gastrointestinal Pharmacology and Therapeutics.2025;[Epub]     CrossRef
Journal Articles
Improved tolerance of recombinant Chlamydomonas rainhardtii with putative 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase from Pyropia yezoensis to nitrogen starvation
Seo-jeong Park , Joon Woo Ahn , Jong-il Choi
J. Microbiol. 2022;60(1):63-69.   Published online December 29, 2021
DOI: https://doi.org/10.1007/s12275-022-1491-7
  • 76 View
  • 0 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract
In a previous study, a putative 2-amino-3-carboxymuconate- 6-semialdehyde decarboxylase (ACMSD) was highly expressed in a mutant strain of Pyropia yezoensis, which exhibited an improved growth rate compared to its wild strain. To investigate the functional role of the putative ACMSD (Pyacmsd) of P. yezoensis, the putative Pyacmsd was cloned and expressed in Chlamydomonas reinhardtii. Recombinant C. reinhardtii cells with Pyacmsd (Cr_Pyacmsd) exhibited enhanced tolerance compared to control C. reinhardtii cells (Cr_control) under nitrogen starvation. Notably, Cr_Pyacmsd cells showed accumulation of lipids in nitrogen-enriched conditions. These
results
demonstrate the role of Pyacmsd in the generation of acetyl-coenzyme A. Thus, it can be used to enhance the production of biofuel using microalgae such as C. reinhardtii and increase the tolerance of other biological systems to nitrogendeficient conditions.

Citations

Citations to this article as recorded by  
  • Characteristics of Recombinant Chlamydomonas reinhardtii Expressing Putative Germin-Like Protein from Neopyropia yezoensis
    Jiae Kim, Jong-il Choi
    Journal of Microbiology and Biotechnology.2024; 34(10): 2132.     CrossRef
  • Overexpression of putative glutathione peroxidase from Neopyropia-associated microorganisms in Chlamydomonas to respond to abiotic stress
    Jeong Hyeon Kim, Eun-Jeong Park, Jong-il Choi
    Archives of Microbiology.2023;[Epub]     CrossRef
  • Overexpression of S-Adenosylmethionine Synthetase in Recombinant Chlamydomonas for Enhanced Lipid Production
    Jeong Hyeon Kim, Joon Woo Ahn, Eun-Jeong Park, Jong-il Choi
    Journal of Microbiology and Biotechnology.2023; 33(3): 310.     CrossRef
Interaction between hypoviral-regulated fungal virulence factor laccase3 and small heat shock protein Hsp24 from the chestnut blight fungus Cryphonectria parasitica
Jeesun Chun† , Yo-Han Ko† , Dae-Hyuk Kim
J. Microbiol. 2022;60(1):57-62.   Published online November 26, 2021
DOI: https://doi.org/10.1007/s12275-022-1498-0
  • 70 View
  • 0 Download
  • 5 Web of Science
  • 3 Crossref
AbstractAbstract
Laccase3 is an important virulence factor of the fungus Cryphonectria parasitica. Laccase3 gene (lac3) transcription is induced by tannic acid, a group of phenolic compounds found in chestnut trees, and its induction is regulated by the hypovirus CHV1 infection. CpHsp24, a small heat shock protein gene of C. parasitica, plays a determinative role in stress adaptation and pathogen virulence. Having uncovered in our previous study that transcriptional regulation of the CpHsp24 gene in response to tannic acid supplementation and CHV1 infection was similar to that of the lac3, and that conserved phenotypic changes of reduced virulence were observed in mutants of both genes, we inferred that both genes were implicated in a common pathway. Building on this finding, in this paper we examined whether the CpHsp24 protein (CpHSP24) was a molecular chaperone for the lac3 protein (LAC3). Our pull-down experiment indicated that the protein products of the two genes directly interacted with each other. Heterologous co-expression of CpHsp24 and lac3 genes using Saccharomyces cerevisiae resulted in more laccase activity in the cotransformant than in a parental lac3-expresssing yeast strain. These findings suggest that CpHSP24 is, in fact, a molecular chaperone for the LAC3, which is critical component of fungal pathogenesis.

Citations

Citations to this article as recorded by  
  • Characteristics and expression of heat shock gene Lghsp17.4 in Lenzites gibbosa, a white rot fungus of wood
    Lianrong Feng, Yujie Chi, Jian Zhang, Xuxin Yang, Shuying Han
    Journal of Forestry Research.2024;[Epub]     CrossRef
  • Hypovirus infection induces proliferation and perturbs functions of mitochondria in the chestnut blight fungus
    Jinzi Wang, Rui Quan, Xipu He, Qiang Fu, Shigen Tian, Lijiu Zhao, Shuangcai Li, Liming Shi, Ru Li, Baoshan Chen
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Applying molecular and genetic methods to trees and their fungal communities
    Markus Müller, Ursula Kües, Katharina B. Budde, Oliver Gailing
    Applied Microbiology and Biotechnology.2023; 107(9): 2783.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP