Journal Articles
- Gene deletion and constitutive expression of the pectate lyase gene 1 (MoPL1) lead to diminished virulence of Magnaporthe oryzae
-
Alex Wegner , Florencia Casanova , Marco Loehrer , Angelina Jordine , Stefan Bohnert , Xinyu Liu , Zhengguang Zhang , Ulrich Schaffrath
-
J. Microbiol. 2022;60(1):79-88. Published online December 29, 2021
-
DOI: https://doi.org/10.1007/s12275-022-1074-7
-
-
22
View
-
0
Download
-
12
Citations
-
Abstract
- Phytopathogenic fungi are known to secrete specific proteins
which act as virulence factors and promote host colonization.
Some of them are enzymes with plant cell wall degradation capability,
like pectate lyases (Pls). In this work, we examined the
involvement of Pls in the infection process of Magnaporthe
oryzae, the causal agent of rice blast disease. From three Plgenes
annotated in the M. oryzae genome, only transcripts of
MoPL1 considerably accumulated during the infection process
with a peak at 72 h post inoculation. Both, gene deletion and
a constitutive expression of MoPL1 in M. oryzae led to a significant
reduction in virulence. By contrast, mutants that constitutively
expressed an enzymatic inactive version of MoPl1
did not differ in virulence compared to the wild type isolate.
This indicates that the enzymatic activity of MoPl1 is responsible
for diminished virulence, which is presumably due to
degradation products recognized as danger associated molecular
patterns (DAMPs), which strengthen the plant immune
response. Microscopic analysis of infection sites pointed to an
increased plant defense response. Additionally, MoPl1 tagged
with mRFP, and not the enzymatic inactive version, focally
accumulated in attacked plant cells beneath appressoria and
at sites where fungal hyphae transverse from one to another
cell. These findings shed new light on the role of pectate lyases
during tissue colonization in the necrotrophic stage of M.
oryzae's life cycle.
- Influences of genetically perturbing synthesis of the typical yellow pigment on conidiation, cell wall integrity, stress tolerance, and cellulase production in Trichoderma reesei
-
Weixin Zhang , Ning An , Junqi Guo , Zhixing Wang , Xiangfeng Meng , Weifeng Liu
-
J. Microbiol. 2021;59(4):426-434. Published online January 26, 2021
-
DOI: https://doi.org/10.1007/s12275-021-0433-0
-
-
15
View
-
0
Download
-
14
Citations
-
Abstract
- The prominent protein producing workhorse Trichoderma
reesei secretes a typical yellow pigment that is synthesized
by a gene cluster including two polyketide synthase encoding
genes sor1 and sor2. Two transcription factors (YPR1 and
YPR2) that are encoded in the same cluster have been shown
to regulate the expression of the sor genes. However, the physiological
relevance of the yellow pigment synthesis in T.
reesei is not completely clear. In this study, a yellow pigment
hyper-producer OEypr1 and three yellow pigment non-producers,
OEypr1-sor1, Δypr1, and OEypr2, were constructed.
Their phenotypic features in mycelial growth, conidiation,
cell wall integrity, stress tolerance, and cellulase production
were determined. Whereas hyperproduction of the yellow pigment
caused significant defects in all the physiological aspects
tested, the non-producers showed similar colony growth, but
improved conidiation, maintenance of cell wall integrity, and
stress tolerance compared to the control strain. Moreover, in
contrast to the severely compromised extracellular cellobiohydrolase
production in the yellow pigment hyperproducer,
loss of the yellow pigment hardly affected induced cellulase
gene expression. Our results demonstrate that interfering with
the yellow pigment synthesis constitutes an engineering strategy
to endow T. reesei with preferred features for industrial
application.
- Mutants defective in the production of encapsulin show a tan-phaselocked phenotype in Myxococcus xanthus
-
Dohee Kim , Juo Choi , Sunjin Lee , Hyesook Hyun , Kyoung Lee , Kyungyun Cho
-
J. Microbiol. 2019;57(9):795-802. Published online June 11, 2019
-
DOI: https://doi.org/10.1007/s12275-019-8683-9
-
-
13
View
-
0
Download
-
12
Citations
-
Abstract
- Myxococcus xanthus, a myxobacterium, displays phase variation
between yellow phase and tan phase. We found that
deletion of the encA gene encoding encapsulin and the encF
gene encoding a metalloprotease causes formation of tan
colonies that never transform into yellow colonies. The encA
and encF mutants were defective in the production of DKxanthene
and myxovirescin. They did not produce extracellular
polysaccharides; hence, the cells did not aggregate
in liquid and showed reduced swarming on agar plates. The
mutants had defective sporulation, but were rescued extracellularly
by wild type cells. All these traits indicate that
the encA and encF mutants are likely to be tan-phase-locked,
and encapsulin has a close relationship with phase variation
in M. xanthus. The encA and encF genes are localized in the
same gene cluster, encBAEFG (MXAN_3557~MXAN_3553).
Unlike the encA and encF genes, deletion of other genes in
the cluster did not show tan-phase-locked phenotype.
Research Support, Non-U.S. Gov't
- Effects of Exopolysaccharide Production on Liquid Vegetative Growth, Stress Survival, and Stationary Phase Recovery in Myxococcus xanthus
-
Wei Hu , Jing Wang , Ian McHardy , Renate Lux , Zhe Yang , Yuezhong Li , Wenyuan Shi
-
J. Microbiol. 2012;50(2):241-248. Published online April 27, 2012
-
DOI: https://doi.org/10.1007/s12275-012-1349-5
-
-
12
View
-
0
Download
-
11
Citations
-
Abstract
- Exopolysaccharide (EPS) of Myxococcus xanthus is a wellregulated
cell surface component. In addition to its known
functions for social motility and fruiting body formation
on solid surfaces, EPS has also been proposed to play a role
in multi-cellular clumping in liquid medium, though this
phenomenon has not been well studied. In this report, we
confirmed that M. xanthus clumps formed in liquid were
correlated with EPS levels and demonstrated that the EPS
encased cell clumps exhibited biofilm-like structures. The
clumps protected the cells at physiologically relevant EPS
concentrations, while cells lacking EPS exhibited significant
reduction in long-term viability and resistance to stressful
conditions. However, excess EPS production was counterproductive
to vegetative growth and viable cell recovery declined
in extended late stationary phase as cells became
trapped in the matrix of clumps. Therefore, optimal EPS
production by M. xanthus is important for normal physiological
functions in liquid.