Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
4 "Myxococcus xanthus"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Gene deletion and constitutive expression of the pectate lyase gene 1 (MoPL1) lead to diminished virulence of Magnaporthe oryzae
Alex Wegner , Florencia Casanova , Marco Loehrer , Angelina Jordine , Stefan Bohnert , Xinyu Liu , Zhengguang Zhang , Ulrich Schaffrath
J. Microbiol. 2022;60(1):79-88.   Published online December 29, 2021
DOI: https://doi.org/10.1007/s12275-022-1074-7
  • 60 View
  • 0 Download
  • 14 Web of Science
  • 12 Crossref
AbstractAbstract
Phytopathogenic fungi are known to secrete specific proteins which act as virulence factors and promote host colonization. Some of them are enzymes with plant cell wall degradation capability, like pectate lyases (Pls). In this work, we examined the involvement of Pls in the infection process of Magnaporthe oryzae, the causal agent of rice blast disease. From three Plgenes annotated in the M. oryzae genome, only transcripts of MoPL1 considerably accumulated during the infection process with a peak at 72 h post inoculation. Both, gene deletion and a constitutive expression of MoPL1 in M. oryzae led to a significant reduction in virulence. By contrast, mutants that constitutively expressed an enzymatic inactive version of MoPl1 did not differ in virulence compared to the wild type isolate. This indicates that the enzymatic activity of MoPl1 is responsible for diminished virulence, which is presumably due to degradation products recognized as danger associated molecular patterns (DAMPs), which strengthen the plant immune response. Microscopic analysis of infection sites pointed to an increased plant defense response. Additionally, MoPl1 tagged with mRFP, and not the enzymatic inactive version, focally accumulated in attacked plant cells beneath appressoria and at sites where fungal hyphae transverse from one to another cell. These findings shed new light on the role of pectate lyases during tissue colonization in the necrotrophic stage of M. oryzae's life cycle.

Citations

Citations to this article as recorded by  
  • Enhanced Resistance to Pokkah Boeng Disease in Sugarcane Through Host‐Induced Gene Silencing Targeting FsCYP51 in Fusarium sacchari
    Liuyu Yin, Zhen Huang, Yuming Zhou, Minyan Lu, Lixiang Zhu, Ruolin Di, Zhenzhen Duan, Yixue Bao, Qin Hu, Charles A. Powell, Baoshan Chen, Jisen Zhang, Muqing Zhang, Wei Yao
    Plant, Cell & Environment.2025;[Epub]     CrossRef
  • Fusarium sacchari FsNis1 induces plant immunity
    Ruolin Di, Lixiang Zhu, Zhen Huang, Minyan Lu, Liuyu Yin, Caixia Wang, Yixue Bao, Zhenzhen Duan, Charles A. Powell, Qin Hu, Jisen Zhang, Muqing Zhang, Wei Yao
    Gene.2024; 907: 148260.     CrossRef
  • Litchi aspartic protease LcAP1 enhances plant resistance via suppressing cell death triggered by the pectate lyase PlPeL8 from Peronophythora litchii
    Wen Li, Peng Li, Yizhen Deng, Zijing Zhang, Junjian Situ, Ji Huang, Minhui Li, Pinggen Xi, Zide Jiang, Guanghui Kong
    New Phytologist.2024; 242(6): 2682.     CrossRef
  • Unravelling transcriptional responses of the willow to Fusarium kuroshium infection
    Enrique Ibarra-Laclette, Luis A. Martínez-Rodríguez, Eric E. Hernández-Domínguez, Mizraim Olivares-Miranda, Benjamín Rodríguez-Haas, Emanuel Villafán, Claudia-Anahí Pérez-Torres, Diana Sánchez-Rangel
    Physiological and Molecular Plant Pathology.2024; 133: 102379.     CrossRef
  • Recognition of the inducible, secretory small protein OsSSP1 by the membrane receptor OsSSR1 and the co-receptor OsBAK1 confers rice resistance to the blast fungus
    Tianfeng Zhao, Shijie Ma, Ziying Kong, Haimiao Zhang, Yi Wang, Junzhe Wang, Jiazong Liu, Wanzhen Feng, Tong Liu, Chunyan Liu, Suochen Liang, Shilin Lu, Xinyu Li, Haipeng Zhao, Chongchong Lu, Muhammad Zunair Latif, Ziyi Yin, Yang Li, Xinhua Ding
    Molecular Plant.2024; 17(5): 807.     CrossRef
  • A plant cell death-inducing protein from litchi interacts with Peronophythora litchii pectate lyase and enhances plant resistance
    Wen Li, Peng Li, Yizhen Deng, Junjian Situ, Zhuoyuan He, Wenzhe Zhou, Minhui Li, Pinggen Xi, Xiangxiu Liang, Guanghui Kong, Zide Jiang
    Nature Communications.2024;[Epub]     CrossRef
  • Roles of Three FgPel Genes in the Development and Pathogenicity Regulation of Fusarium graminearum
    Lu Cai, Xiao Xu, Ye Dong, Yingying Jin, Younes M. Rashad, Dongfang Ma, Aiguo Gu
    Journal of Fungi.2024; 10(10): 666.     CrossRef
  • Pectate Lyase from Fusarium sacchari Induces Plant Immune Responses and Contributes to Virulence
    Caixia Wang, Zhen Huang, Zhenzhen Duan, Lixiang Zhu, Ruolin Di, Yixue Bao, Charles A. Powell, Qin Hu, Baoshan Chen, Muqing Zhang, Wei Yao, Lindsey Price Burbank
    Microbiology Spectrum.2023;[Epub]     CrossRef
  • Pectate Lyase Genes Abundantly Expressed During the Infection Regulate Morphological Development of Colletotrichum camelliae and CcPEL16 Is Required for Full Virulence to Tea Plants
    Hong Jiang, Qinghai Cao, Xinchao Wang, Wuyun Lv, Yuchun Wang, Aaron P. Mitchell
    mSphere.2023;[Epub]     CrossRef
  • Small GTPases RasA and RasB regulate development, patulin production, and virulence of Penicillium expansum
    Yuanyuan Zong, Xuemei Zhang, Di Gong, Feng Zhang, Lirong Yu, Yang Bi, Edward Sionov, Dov Prusky
    Postharvest Biology and Technology.2023; 197: 112192.     CrossRef
  • Whole-genome sequencing and comparative genomics reveal the potential pathogenic mechanism of Neoscytalidium dimidiatum on pitaya
    Meng Wang, Min Xu, Zhouwen Wang, Yi Ding, Shaoling Kang, Senrong Jiang, Shuangshuang Wei, Jun Xie, Jiaquan Huang, Dongdong Li, Wenbin Hu, Hongli Li, Xingyu Jiang, Hua Tang, Yonglin Wang
    Microbiology Spectrum.2023;[Epub]     CrossRef
  • Identification of RT-qPCR reference genes suitable for gene function studies in the pitaya canker disease pathogen Neoscytalidium dimidiatum
    Meng Wang, Zhouwen Wang, Shuangshuang Wei, Jun Xie, Jiaquan Huang, Dongdong Li, Wenbin Hu, Hongli Li, Hua Tang
    Scientific Reports.2022;[Epub]     CrossRef
Influences of genetically perturbing synthesis of the typical yellow pigment on conidiation, cell wall integrity, stress tolerance, and cellulase production in Trichoderma reesei
Weixin Zhang , Ning An , Junqi Guo , Zhixing Wang , Xiangfeng Meng , Weifeng Liu
J. Microbiol. 2021;59(4):426-434.   Published online January 26, 2021
DOI: https://doi.org/10.1007/s12275-021-0433-0
  • 50 View
  • 0 Download
  • 12 Web of Science
  • 13 Crossref
AbstractAbstract
The prominent protein producing workhorse Trichoderma reesei secretes a typical yellow pigment that is synthesized by a gene cluster including two polyketide synthase encoding genes sor1 and sor2. Two transcription factors (YPR1 and YPR2) that are encoded in the same cluster have been shown to regulate the expression of the sor genes. However, the physiological relevance of the yellow pigment synthesis in T. reesei is not completely clear. In this study, a yellow pigment hyper-producer OEypr1 and three yellow pigment non-producers, OEypr1-sor1, Δypr1, and OEypr2, were constructed. Their phenotypic features in mycelial growth, conidiation, cell wall integrity, stress tolerance, and cellulase production were determined. Whereas hyperproduction of the yellow pigment caused significant defects in all the physiological aspects tested, the non-producers showed similar colony growth, but improved conidiation, maintenance of cell wall integrity, and stress tolerance compared to the control strain. Moreover, in contrast to the severely compromised extracellular cellobiohydrolase production in the yellow pigment hyperproducer, loss of the yellow pigment hardly affected induced cellulase gene expression. Our results demonstrate that interfering with the yellow pigment synthesis constitutes an engineering strategy to endow T. reesei with preferred features for industrial application.

Citations

Citations to this article as recorded by  
  • Co-inoculation of Soybean Seedling with Trichoderma asperellum and Irpex laceratus Promotes the Absorption of Nitrogen and Phosphorus
    Zengyuan Tian, Xiaomin Wang, Yanyi Li, Yu Xi, Mengting He, Yuqi Guo
    Current Microbiology.2024;[Epub]     CrossRef
  • Small GTPase Rab7 is involved in stress adaptation to carbon starvation to ensure the induced cellulase biosynthesis in Trichoderma reesei
    Lin Liu, Zhixing Wang, Yu Fang, Renfei Yang, Yi Pu, Xiangfeng Meng, Weifeng Liu
    Biotechnology for Biofuels and Bioproducts.2024;[Epub]     CrossRef
  • TrLys9 participates in fungal development and lysine biosynthesis in Trichoderma reesei
    Jinling Lan, Lin Zhang, Jie Gao, Ronglin He
    The Journal of General and Applied Microbiology.2023; 69(3): 159.     CrossRef
  • MAPkinases regulate secondary metabolism, sexual development and light dependent cellulase regulation in Trichoderma reesei
    Miriam Schalamun, Sabrina Beier, Wolfgang Hinterdobler, Nicole Wanko, Johann Schinnerl, Lothar Brecker, Dorothea Elisa Engl, Monika Schmoll
    Scientific Reports.2023;[Epub]     CrossRef
  • C-terminus of serine–arginine protein kinase-like protein, SrpkF, is involved in conidiophore formation and hyphal growth under salt stress in Aspergillus aculeatus
    Natsumi Kobayashi, Ryohei Katayama, Kentaro Minamoto, Takashi Kawaguchi, Shuji Tani
    International Microbiology.2023; 27(1): 91.     CrossRef
  • Global regulation of fungal secondary metabolism in Trichoderma reesei by the transcription factor Ypr1, as revealed by transcriptome analysis
    Jie Yang, Jia-Xiang Li, Fei Zhang, Xin-Qing Zhao
    Engineering Microbiology.2023; 3(2): 100065.     CrossRef
  • Dual Regulatory Role of Chromatin Remodeler ISW1 in Coordinating Cellulase and Secondary Metabolite Biosynthesis in Trichoderma reesei
    Yanli Cao, Renfei Yang, Fanglin Zheng, Xiangfeng Meng, Weixin Zhang, Weifeng Liu, Xiaorong Lin
    mBio.2022;[Epub]     CrossRef
  • Heterologous Expression of Secondary Metabolite Genes in Trichoderma reesei for Waste Valorization
    Mary L. Shenouda, Maria Ambilika, Elizabeth Skellam, Russell J. Cox
    Journal of Fungi.2022; 8(4): 355.     CrossRef
  • Morphologically favorable mutant of Trichoderma reesei for low viscosity cellulase production
    Mukund G. Adsul, Pooja Dixit, Jitendra K. Saini, Ravi P. Gupta, Sankara Sri Venkata Ramakumar, Anshu S. Mathur
    Biotechnology and Bioengineering.2022; 119(8): 2167.     CrossRef
  • Identification of a Bidirectional Promoter from Trichoderma reesei and Its Application in Dual Gene Expression
    Xiaoxiao Wu, Fuzhe Li, Renfei Yang, Xiangfeng Meng, Weixin Zhang, Weifeng Liu
    Journal of Fungi.2022; 8(10): 1059.     CrossRef
  • A histone H3K9 methyltransferase Dim5 mediates repression of sorbicillinoid biosynthesis in Trichoderma reesei
    Lei Wang, Jialong Liu, Xiaotong Li, Xinxing Lyu, Zhizhen Liu, Hong Zhao, Xiangying Jiao, Weixin Zhang, Jun Xie, Weifeng Liu
    Microbial Biotechnology.2022; 15(10): 2533.     CrossRef
  • Transcriptome Comparison of Secondary Metabolite Biosynthesis Genes Expressed in Cultured and Lichenized Conditions of Cladonia rangiferina
    Natalia Sveshnikova, Michele D. Piercey-Normore
    Diversity.2021; 13(11): 529.     CrossRef
  • From induction to secretion: a complicated route for cellulase production in Trichoderma reesei
    Su Yan, Yan Xu, Xiao-Wei Yu
    Bioresources and Bioprocessing.2021;[Epub]     CrossRef
Mutants defective in the production of encapsulin show a tan-phaselocked phenotype in Myxococcus xanthus
Dohee Kim , Juo Choi , Sunjin Lee , Hyesook Hyun , Kyoung Lee , Kyungyun Cho
J. Microbiol. 2019;57(9):795-802.   Published online June 11, 2019
DOI: https://doi.org/10.1007/s12275-019-8683-9
  • 45 View
  • 0 Download
  • 13 Web of Science
  • 10 Crossref
AbstractAbstract
Myxococcus xanthus, a myxobacterium, displays phase variation between yellow phase and tan phase. We found that deletion of the encA gene encoding encapsulin and the encF gene encoding a metalloprotease causes formation of tan colonies that never transform into yellow colonies. The encA and encF mutants were defective in the production of DKxanthene and myxovirescin. They did not produce extracellular polysaccharides; hence, the cells did not aggregate in liquid and showed reduced swarming on agar plates. The mutants had defective sporulation, but were rescued extracellularly by wild type cells. All these traits indicate that the encA and encF mutants are likely to be tan-phase-locked, and encapsulin has a close relationship with phase variation in M. xanthus. The encA and encF genes are localized in the same gene cluster, encBAEFG (MXAN_3557~MXAN_3553). Unlike the encA and encF genes, deletion of other genes in the cluster did not show tan-phase-locked phenotype.

Citations

Citations to this article as recorded by  
  • Encapsulated Ferritin-like Proteins: A Structural Perspective
    Elif Eren, Norman R. Watts, Felipe Montecinos, Paul T. Wingfield
    Biomolecules.2024; 14(6): 624.     CrossRef
  • A widespread bacterial protein compartment sequesters and stores elemental sulfur
    Robert Benisch, Michael P. Andreas, Tobias W. Giessen
    Science Advances.2024;[Epub]     CrossRef
  • Structure and heterogeneity of a highly cargo-loaded encapsulin shell
    Seokmu Kwon, Michael P. Andreas, Tobias W. Giessen
    Journal of Structural Biology.2023; 215(4): 108022.     CrossRef
  • Bacterial Nanocompartments: Structures, Functions, and Applications
    Harry Benjamin McDowell, Egbert Hoiczyk, Michael Y. Galperin
    Journal of Bacteriology.2022;[Epub]     CrossRef
  • Condensation and Protection of DNA by the Myxococcus xanthus Encapsulin: A Novel Function
    Ana V. Almeida, Ana J. Carvalho, Tomás Calmeiro, Nykola C. Jones, Søren V. Hoffmann, Elvira Fortunato, Alice S. Pereira, Pedro Tavares
    International Journal of Molecular Sciences.2022; 23(14): 7829.     CrossRef
  • Encapsulins
    Tobias W. Giessen
    Annual Review of Biochemistry.2022; 91(1): 353.     CrossRef
  • Advances in encapsulin nanocompartment biology and engineering
    Jesse A. Jones, Tobias W. Giessen
    Biotechnology and Bioengineering.2021; 118(1): 491.     CrossRef
  • Encapsulin nanocages: Protein encapsulation and iron sequestration
    Ana V. Almeida, Ana J. Carvalho, Alice S. Pereira
    Coordination Chemistry Reviews.2021; 448: 214188.     CrossRef
  • Discovery and characterization of a novel family of prokaryotic nanocompartments involved in sulfur metabolism
    Robert J Nichols, Benjamin LaFrance, Naiya R Phillips, Devon R Radford, Luke M Oltrogge, Luis E Valentin-Alvarado, Amanda J Bischoff, Eva Nogales, David F Savage
    eLife.2021;[Epub]     CrossRef
  • Nanotechnological Applications Based on Bacterial Encapsulins
    Javier M. Rodríguez, Carolina Allende-Ballestero, Jeroen J. L. M. Cornelissen, José R. Castón
    Nanomaterials.2021; 11(6): 1467.     CrossRef
Research Support, Non-U.S. Gov't
Effects of Exopolysaccharide Production on Liquid Vegetative Growth, Stress Survival, and Stationary Phase Recovery in Myxococcus xanthus
Wei Hu , Jing Wang , Ian McHardy , Renate Lux , Zhe Yang , Yuezhong Li , Wenyuan Shi
J. Microbiol. 2012;50(2):241-248.   Published online April 27, 2012
DOI: https://doi.org/10.1007/s12275-012-1349-5
  • 36 View
  • 0 Download
  • 11 Scopus
AbstractAbstract
Exopolysaccharide (EPS) of Myxococcus xanthus is a wellregulated cell surface component. In addition to its known functions for social motility and fruiting body formation on solid surfaces, EPS has also been proposed to play a role in multi-cellular clumping in liquid medium, though this phenomenon has not been well studied. In this report, we confirmed that M. xanthus clumps formed in liquid were correlated with EPS levels and demonstrated that the EPS encased cell clumps exhibited biofilm-like structures. The clumps protected the cells at physiologically relevant EPS concentrations, while cells lacking EPS exhibited significant reduction in long-term viability and resistance to stressful conditions. However, excess EPS production was counterproductive to vegetative growth and viable cell recovery declined in extended late stationary phase as cells became trapped in the matrix of clumps. Therefore, optimal EPS production by M. xanthus is important for normal physiological functions in liquid.

Journal of Microbiology : Journal of Microbiology
TOP